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No notion of shared ownership

Facade FacadeX
• Bad fit for components 

• Many patterns temporarily break OAD 
(e.g., iterators) 

• Solution: flatten ownership hierarchy

— No multiple entry points 
— No ”friends”



Flatten Ownership Hierarchy

• Lift the ownership of the implementation to 
   the level of the facade 

• All objects become siblings (or peers)
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Flatten Ownership Hierarchy

• Lift the ownership of the implementation to 
   the level of the facade 

• All objects become siblings (or peers) 

• …but, sadly, enables exposure

Facade Facade

Implementation
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— No multiple entry points 
— No ”friends”



This Talk: Co-Ownership

Allowing several objects to 
collaboratively and with equal 
rights define a single, shared 
context
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This Talk: Co-Ownership

”

• Multiple entry points to aggregates 

• ”Friendship” 

• Essentially a simplification of  
   multiple ownership [MOJO] 

• A ”disciplined relaxation of OAD”
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Co-Ownership

• An aggregate context is  
   co-owned by a  
   number of bridge objects 

• Bridge objects are siblings 

• Different siblings may have 
    different aggregates 

• An object cannot be a bridge  
   for more than one aggregate 

• Objects in the aggregate  
   enjoy strong encapsulation
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Example: Iterators

class List<data> { Link<rep, data> head; ... }

// Iterator through flattening 
class List<data> {  
  Link<owner, data> head; ...  

  Iterator<owner, data> iter;  

  Iterator<owner, data> iterator() {  
    return iter;  
  }  
}

List Iterator

Head

Exposure



Example: Iterators

class List<data> {  
  Link<aggregate, data> head; ... 

  Iterator<bridge, data> iter;  

  Iterator<bridge, data> iterator() {  
    return iter;  
  }  
}
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Comparison With Existing Systems

Owners-as-ombudsmen: every path from a root in the system to 
an object in an aggregate context contains one of the context’s 
bridge objects.
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Typing Co-Ownership

In addition to its explicitly given permissions, an object has access to  

•owner — the objects in its owning context 

•rep — the objects it owns 

•aggregate — the objects in the aggregate it co-owns with others 

•bridge — the objects in its owner context with which it co-owns an aggregate



In addition to its explicitly given permissions, an object has access to  

•owner — the objects in its owning context 

•rep — the objects it owns 

•aggregate — the objects in the aggregate it co-owns with others 

•bridge — the objects in its owner context with which it co-owns an aggregate

Typing Co-Ownership

A disciplined (safe) flattening
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An Aggregate is a ”Hidden Subset” of Owner



Key Typing Issues 1/2

Lose ”bridge status” if x is not a bridge

Only access aggregate objects from  
bridge objects

Only assign aggregate/bridge objects 
from bridge objects

(a)

(a+b)

(b)

Lose ”bridge status” if x is not a bridge



Key Typing Issues 2/2

Objects owned by q are accessible 
to objects owned by p

Bridge objects and aggregate objects are 
accessible by representation objects

Essentially the standard (GOOD-TYPE) rule of deep ownership types, 
extended with support for bridge and aggregate



Boyapati’s inner classes none no bad
no equal 
rights

yes

Lu et al.’s downgrading none yes high none yes

Ownership Domains none yes high none yes

CoBoxes strong* yes high yes yes

Mojo & Mojojojo strong
ham-
pered

high yes no

This work strong yes
discip-
lined

yes yes
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* = enforced at run-time
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Notes and Future Work

Co-ownership is encoded as a flattening which is only visible to the collaborating 
bridge objects (not to the outside) 

Aggregates can be built up in two ways: 

•From within (similar to Boyapati’s proposal) 

•Through attachment (requires unique references) 

Abstraction: It is not possible to tell whether two siblings belong to the same 
aggregate or not (once they lose bridge status they’re owned by owner) 

Current limitation #1: an object can only participate in one co-ownership  

Current limitation #2: classes need to explicitly use aggregate and bridge  

•More details and examples in the paper!



Thank you. Questions?


