
Department of
Information Technology
Uppsala University
Sweden

Multiple Aggregate Entry Points
for Ownership Types

 Johan Östlund Tobias Wrigstad

ECOOP’12

The Perils of Life

Jar

Cookie

Dave

Ownership Types

Jar

Cookie

Dave

X

• Strong notion of aggregate

Ownership Types Models the Physical World

Jar

Cookie

Dave

X Car

Engine

Other car

X

• Strong notion of aggregate

Limitations

Service

Implementation

Exposure

• Strong notion of aggregate
— OAD forces single entry point

Limitations

Service

Implementation

Exposure
Facade FacadeX

• Strong notion of aggregate
— OAD forces single entry point

Limitations

Service

Implementation

Exposure
Facade FacadeX

• Strong notion of aggregate
— OAD forces single entry point

No notion of shared ownership

No notion of shared ownership

Facade FacadeX
• Bad fit for components

• Many patterns temporarily break OAD
(e.g., iterators)

• Solution: flatten ownership hierarchy

— No multiple entry points
— No ”friends”

Flatten Ownership Hierarchy

• Lift the ownership of the implementation to
 the level of the facade

• All objects become siblings (or peers)

Facade Facade

Implementation

— No multiple entry points
— No ”friends”

Flatten Ownership Hierarchy

• Lift the ownership of the implementation to
 the level of the facade

• All objects become siblings (or peers)

• …but, sadly, enables exposure

Facade Facade

Implementation

Exposure

— No multiple entry points
— No ”friends”

This Talk: Co-Ownership

Allowing several objects to
collaboratively and with equal
rights define a single, shared
context

”

This Talk: Co-Ownership

”

• Multiple entry points to aggregates

• ”Friendship”

• Essentially a simplification of  
 multiple ownership [MOJO]

• A ”disciplined relaxation of OAD”

world

k

rep

co-own

rep

a

FacadeFacade

bob

rep

Allowing several objects to
collaboratively and with equal
rights define a single, shared
context

Co-Ownership

• An aggregate context is
 co-owned by a
 number of bridge objects

• Bridge objects are siblings

• Different siblings may have
 different aggregates

• An object cannot be a bridge
 for more than one aggregate

• Objects in the aggregate
 enjoy strong encapsulation

world

k

B's rep

aggregate

A's rep

a

BA

bob

rep

Co-Ownership

• An aggregate context is
 co-owned by a
 number of bridge objects

• Bridge objects are siblings

• Different siblings may have
 different aggregates

• An object cannot be a bridge
 for more than one aggregate

• Objects in the aggregate
 enjoy strong encapsulation

world

k

B's rep

aggregate

A's rep

a

BA

bob

rep

Example: Iterators

class List<data> { Link<rep, data> head; ... }

// Iterator through flattening
class List<data> {
 Link<owner, data> head; ...

 Iterator<owner, data> iter;

 Iterator<owner, data> iterator() {
 return iter;
 }
}

List Iterator

Head

Exposure

Example: Iterators

class List<data> {
 Link<aggregate, data> head; ...

 Iterator<bridge, data> iter;

 Iterator<bridge, data> iterator() {
 return iter;
 }
}

Iterator
List

Head
Current

Comparison With Existing Systems

Owners-as-ombudsmen: every path from a root in the system to
an object in an aggregate context contains one of the context’s
bridge objects.

OAD EUADE OAM OAO

XX X X
X

X
X X

X

Unique
Read-
only

Comparison With Existing Systems

Owners-as-ombudsmen: every path from a root in the system to
an object in an aggregate context contains one of the context’s
bridge objects.

OAD EUADE OAM

OAO

XX X X
X

X

X

X
X

Unique
Read-
only

Typing Co-Ownership

In addition to its explicitly given permissions, an object has access to

•owner — the objects in its owning context

•rep — the objects it owns

•aggregate — the objects in the aggregate it co-owns with others

•bridge — the objects in its owner context with which it co-owns an aggregate

In addition to its explicitly given permissions, an object has access to

•owner — the objects in its owning context

•rep — the objects it owns

•aggregate — the objects in the aggregate it co-owns with others

•bridge — the objects in its owner context with which it co-owns an aggregate

Typing Co-Ownership

A disciplined (safe) flattening

Iterator
List

Head
Current

An Aggregate is a ”Hidden Subset” of Owner

Key Typing Issues 1/2

Lose ”bridge status” if x is not a bridge

Only access aggregate objects from
bridge objects

Only assign aggregate/bridge objects
from bridge objects

(a)

(a+b)

(b)

Lose ”bridge status” if x is not a bridge

Key Typing Issues 2/2

Objects owned by q are accessible
to objects owned by p

Bridge objects and aggregate objects are
accessible by representation objects

Essentially the standard (GOOD-TYPE) rule of deep ownership types,
extended with support for bridge and aggregate

Boyapati’s inner classes none no bad
no equal
rights

yes

Lu et al.’s downgrading none yes high none yes

Ownership Domains none yes high none yes

CoBoxes strong* yes high yes yes

Mojo & Mojojojo strong
ham-
pered

high yes no

This work strong yes
discip-
lined

yes yes

Lo
ca

l r
ea

son
ing

 po
we

r

Mod
ula

rit
y

Fle
xib

ilit
y

Co
-ow

ne
rsh

ip
Sim

pli
cit

y

Comparison with
Previous Work

* = enforced at run-time

✘

Notes and Future Work

Co-ownership is encoded as a flattening which is only visible to the collaborating
bridge objects (not to the outside)

Aggregates can be built up in two ways:

•From within (similar to Boyapati’s proposal)

•Through attachment (requires unique references)

Abstraction: It is not possible to tell whether two siblings belong to the same
aggregate or not (once they lose bridge status they’re owned by owner)

Current limitation #1: an object can only participate in one co-ownership

Current limitation #2: classes need to explicitly use aggregate and bridge

•More details and examples in the paper!

Thank you. Questions?

