WEC.S.

v/ .‘1
a4

A VERITAS HY
YOI/

S

Multiple Aggregate Entry Points
for Ownership Types

Department of

Information Technology Johan Ostlund Tobias Wrigstad
Uppsala University

Sweden

The Perils of Life

\

Jar

Cookie

Dave

Ownership Types

\ Dave

Jar

Cookie

= Strong notion of aggregate

Ownership Types Models the Physical World

\

Jar

Cookie

Dave

= Strong notion of aggregate

\

Car

Engine

Other car

Limitations

\ Exposure

Service

Implementation

= Strong notion of aggregate
— OAD forces single entry point

Limitations

\

Service

Implementation

Exposure

= Strong notion of aggregate

— OAD forces single entry point

\

Facade

Facade

Limitations

\ Exposure \

Service Facade X | Facade

Implementation

No notion of shared ownership

J

= Strong notion of aggregate
— OAD forces single entry point

No notion of shared ownership

= Bad fit for components \

Facade

Facade

= Many patterns temporarily break OAD

(e.g., iterators)

= Solution: flatten ownership hierarchy

— No multiple entry points

— No "friends”

Flatten Ownership Hierarchy

\

Facade Facade

Implementation

— No multiple entry points

— No "friends”

= Lift the ownership of the implementation to

the level of the facade

= All objects become siblings (or peers)

Flatten Ownership Hierarchy

\

Facade

Exposure

Facade

Implementation

— No multiple entry points

— No "friends”

= Lift the ownership of the implementation to

the level of the facade
= All objects become siblings (or peers)

» _.but, sadly, enables exposure

This Talk: Co-Ownership

Allowing several objects to
collaboratively and with equal

rights define a single, shared
context

This Talk: Co-Ownership

Allowing several objects to
collaboratively and with equal

rights define a single, shared
context

= Multiple entry points to aggregates

= "Friendship”

» Essentially a simplification of

multiple ownership [M0JO]

re
P

= A "disciplined relaxation of OAD"

Co-Ownership

An aggregate context is
co-owned by a

number of bridge objects

Bridge objects are siblings

Different siblings may have

different aggregates

= An object cannot be a bridge
for more than one aggregate

= Objects in the aggregate

enjoy strong encapsulation

(aggregate

rep

Co-Ownership

= An aggregate context is

co-owned by a

number of bridge objects

» Different siblings may have

different aggregates

——

“Jor more than one aggregate

= — . .

= Objects in the aggregate

enjoy strong encapsulation

~An object cannot be a b;ldge N

(aggregate

rep

Example: lterators

class List<data> { Link<rep, data> head;

// Iterator through flattening
class List<data> {
Link<owner, data> head;

Iterator<owner, data> iter;

Tterator<owner, data> iterator() {

return 1iter;

List

Exposure

Iterator

Head

Example: lterators Q\

()

L /C) lterator
O\ Current f
BN

O

class List<data> { N
Link<aggregate, data> head;

Iterator<bridge, data> 1iter;

Iterator<bridge, data> iterator() {

return 1ter;

¥

Comparison With Existing Systems

Owners-as-ombudsmen: every path from a root in the system to
an object in an aggregate context contains one of the context’s

bridge objects.

Read-

N/ ?Em/ \ / m/j \

, \D , \ ,W\D/‘ , W\Dé

] 'l

B

OAD EUADE OAM OAO

Comparison With Existing Systems

Owners-as-ombudsmen: every path from a root in the system to

an object in an aggregate context contains one of the context’s

Read- \ =

bridge objects.

,\m/ N /ij ﬂ/u”iq”e ,\m/ X yj
valawaliaw,

[] []

OAD EUADE OAM

OAO

Typing Co-Ownership

In addition to its explicitly given permissions, an object has access to
» owner — the objects in its owning context
= rep — the objects it owns
» aggregate — the objects in the aggregate it co-owns with others

» bridge — the objects in its owner context with which it co-owns an aggregate

(WE-CLASS)
E = owner <™ world, rep <" owner,bridge <™ owner, \
aggregate <" owner,p > owner, this : C(bridge, p)
{g} C {p} owner ¢Z {p} -
7s = D(owner, q) E;s b F E:rsHM

- class C{owner, p) extends D(q) { ' M }

Typing Co-Ownership

In addition to its explicitly given permissions, an object has ac
» owner — the objects in its owning context

= rep — the objects it owns

I'I'SA

'I'IIAP

» aggregate — the objects in the aggregate it co-owns with

» bridge — the objects in its owner context with which it co-ow

(WF-CLASS)

E = owner <" world, rep <" owner,bridge <" owner, \
aggregate <" owner,p > owner, this : C(bridge, D)
{q} C{p} ownmer & {p}
7s = D(owner, q) E:nFF E:rs+M

- class C{owner, p) extends D(q) { F M }

A disciplined (safe) flattening

An Aggregate is a "Hidden Subset” of Owner

4)
Q)

\

4)
Iterator
List
O\ Current /j
! { /
O
___ 1\ Y,

\§ J

(EXPR-SELECT) Key Typing lSSlles 1/2
EFx:c(of)

FieldType(C, f) = 7 Only access aggregate objects from
rep € Owners(7) = = = this

(a) aggregate € Owners(7) = p = bridge / bridge objects
OmbudsmanAdaptation(p, 7) = 7’

EF z.f: () \Lose "bridge status” if x is not a bridge

(EXPR-UPDATE)
Et z:c(oP)
FieldType(C, f) = 7
Etry:oP(1)
rep € Owners(7) = x = this : : .
(b) bridge, aggregate € Owners(r) = p = bridge «— Only assign aggregate/bridge objects

EFz.f=1y:aoP(1) from bridge objects

(EXPR-METHOD-CALL)
EtF z:c(oP)
Signature(C,m) = 11 — T2
Etry:oP(n)
rep € Owners(71) U Owners(72) = = = this
bridge, aggregate € Owners(71) = p = bridge
agg;gba:éig‘xgzr;g;lzp?‘rz)b::gi— — Lose "bridge status” if x is not a bridge

EtFz.m(y):oP(1)

(a+b)

-
owner
7{ / bridge}

OmbudsmanAdaptation(bridge, 7)
OmbudsmanAdaptation(p, 7)

Key Typing Issues 2/2

(P-INSIDE) (P-REP)
EtFp<*q - B p € {bridge, aggregate}
ElFp—o%g E rep »% p
Objects owned by g are accessible Bridge objects and aggregate objects are
to objects owned by p accessible by representation objects

(GOOD-TYPE)
EFp EbFp—-°™p Arity(c) = |p,P

E = C(p,p)

Essentially the standard (GOOD-TYPE) rule of deep ownership types,
extended with support for bridge and aggregate

. . $Q1
Comparison with S
: 0
Previous Work N BS
O ©
0 A S D
R > N N O
N N @ \\
. . N Q NS e
= enforced at run-time (Jfb Ob Q,\ S '&Q

N R AR)

G no equal
Boyapati's inner classes none no bad . yes

rights
Lu et al.s downgrading none | yes high | none | yes
Ownership Domains *e yes | high | none | yes
CoBoxes strong™ yes high yes yes

: Coe . ham- _
Mojo & Mojojojo strong high yes no
pered
: discip-

This work strong | yes - yes yes

Notes and Future Work

Co-ownership is encoded as a flattening which is only visible to the collaborating
bridge objects (not to the outside)

Aggregates can be built up in two ways:
= From within (similar to Boyapati's proposal)
= Through attachment (requires unique references)

Abstraction: It is not possible to tell whether two siblings belong to the same
aggregate or not (once they lose bridge status they're owned by owner)

Current limitation #1: an object can only participate in one co-ownership
Current limitation #2: classes need to explicitly use aggregate and bridge

» More details and examples in the paper!

Thank you. Questions?

