
Low-Level Memory Optimisations
at the High-Level

with Ownership-like Annotations

Juliana Franco
Martin Hagelin

Tobias Wrigstad
Sophia Drossopoulou

The OHMM framework

• Data layout in memory can have a great impact in your
program’s performance!
• Reduce cache misses
• or help the prefetcher

Do you want fast programs?

833 * 106 cache-misses
20.49 seconds

1,325 * 106 cache-misses
28.04 seconds

Example: array[N] of arrays[N] vs array[N*N]

• More cores? More threads? Write better parallel and
concurrent code?

A little bit of context on hardware

http://mechanical-sympathy.blogspot.co.uk/2013/02/cpu-cache-flushing-fallacy.html

A little bit of context on hardware

read purple data

Memory:

Cache:

Core:

A little bit of context on hardware

read purple data

Memory:

Cache:

Core: Cache miss 65ns

A little bit of context on hardware

read purple
 fetch purple data from memory

Memory:

Cache:

Core: Cache miss 65ns

A little bit of context on hardware

read purple
 fetch purple data from memory
read purple again

Memory:

Cache:

Core: Cache miss

Cache hit

65ns

3ns

A little bit of context on hardware

read purple
 fetch purple data from memory
read purple again
read red data

Memory:

Cache:

Core: Cache miss

Cache hit
Cache hit

65ns

3ns
3ns

Existing techniques
class Video 
 id: int
 views: int
 likes: int  
 
class VideoList  
 vs: Array[Video]

def popularVideos(pivot: int): void  
 // iterates over all videos

V1 V2 V3 V4

class Video 
 id: int
 views: int
 likes: int  
 
class VideoList  
 vs: Array[Video]

def popularVideos(pivot: int): void  
 // iterates over all videos

Foo

Foo

Bar

Bar

Existing techniques

class Video 
 id: int
 views: int
 likes: int  
 
class VideoList  
 vs: Array[Video]

def popularVideos(pivot: int): void  
 // iterates over all videos

pool

video

Object Pooling

vs

Existing techniques

class Video 
 id: int
 views: int
 likes: int  
 
class VideoList  
 vs: Array[Video]

def popularVideos(pivot: int): void  
 foreach v in this.vs do
 if v.views > pivot then
 print(v.id, v.views, v.likes)

I’m loading data to cache
that will never be used

Existing techniques

class Video 
 id: int
 views: int
 likes: int  
 
class VideoList  
 vs: Array[Video]

def popularVideos(pivot: int): void  
 foreach v in this.vs do
 if v.views > pivot then
 print(v.id, v.views, v.likes)

subpool

video

vs

subpool

Object Splitting

Existing techniques

• It is known that these techniques can improve performance
• And programmers use it a lot

• Ex: array of structs vs struct or arrays
• However:

• they are too low level
• the concept of struct or object is lost
• the code becomes difficult to write and to modify

class Video 
 id: int
 views: int
 likes: int  
 
class VideoList  
 vs: Array[Video]

 def popularVideos(pivot: int): void  
 foreach v in this.vs do
 if v.views > pivot then
 print(v.id, v.views, v.likes)

class VideoList 
 ids: int[N]
 views: int[N]
 likes: int[N]

def popularVideos(pivot: int): void  
 for (int i = 0; i < N; i++) do
 if this.views[i] > pivot then
 print(this.ids[i], this.views[i], this.likes[i])

class VideoList 
 id_likes: (int, int)[N]
 views: int[N]

def popularVideos(pivot: int): void  
 for (int i = 0; i < N; i++) do
 if this.views[i] > pivot then
 print(this.id_likes[i].fst, this.views[i], this.id_likes[i].snd)

Our solution
We want to provide a high-level way of specifying the data

structures which does not affect the way they are used

Martin

class Video 
 id: int
 views: int
 likes: int  
 
class VideoList  
 vs: Array[Video]

 def popularVideos(pivot: int): void  
 foreach v in this.vs do
 if v.views > pivot then
 print(v.id, v.views, v.likes)

class VideoList 
 ids: int[N]
 views: int[N]
 likes: int[N]

def popularVideos(pivot: int): void  
 for (int i = 0; i < N; i++) do
 if this.views[i] > pivot then
 print(this.ids[i], this.views[i], this.likes[i])

This code for…

… this behaviour

Layout annotations
class Video<o> 
 id: int
 views: int
 likes: int  
 
class VideoList<o, o’>  
 vs: Array[Video<o’>] 

Pool and Object Allocation

new VideoList<none, none>

Pool and Object Allocation
Pool pool of Video in  
 new VideoList<none, pool>

class Video<o> 
 id: int
 views: int
 likes: int  
 
class VideoList<o, o’>  
 vs: Array[Video<o’>] 

Layout annotations

pool

video

vs

Clustering annotations

Pool pool of Video in  
 new VideoList<none, pool>

subpool

video

vs

subpool
Pool pool of Video =  
 cluster {id, likes} 
 + cluster {views} 
in  
 new VideoList<none, pool>

pool

video

vs

How do we use this data structure?
def popularVideos(pivot: int): void  
 foreach v in this.vs do
 if v.views > pivot then
 print(v.id, v.views, v.likes)

let vl = new VideoList<none, pool> in
vl.vs[45678].likes ++

let vl = new VideoList<none, none> in
vl.vs[45678].likes ++
print(vl.vs[45678].views)

How is this possible?

Pool pool of Video =  
 cluster {id} + cluster {likes, views}
let vl = new VideoList<none, pool> in
vl.vs[45678].likes ++
print(vl.vs[45678].views)

Pool pool of Video =  
 cluster {id, likes, views}
let vl = new VideoList<none, pool> in
vl.vs[45678].likes ++
print(vl.vs[45678].views)

1. A low-level language that does all the hard work  
2. A compiler that uses the annotations to compile HL
code to equivalent LL code

Martin

A little bit on the low-level language
Instructions:

Example:

x = new Video<none>
y = x. likes
x.likes = y + 10

x = alloc(Video)
y = read(x, likes)
z = y + 10
write(x, likes, z)

p1 = pcreate(Video, [id, likes], [views])
x = palloc(p1)
y = pread(x, 0, 1)
z = y + 10
write(x, 0, 1, z)

A little bit on the compiler

Pool p1 of Video =
cluster {id, likes} + cluster {views}

x = new Video<p1>
y = x. likes
x.likes = y + 10

Contributions
• Separation of functional concerns from the layout concerns

• At a higher-level: an object is still a single unit, that is somewhere
in memory.

• Layout annotations describe how pools are organised but object
access does not need to reflect that.

• Therefore, the code easier to write and modify, and also efficient.

• But also much more:

• The high-level language is type sound, and given that we correctly
compile it, we know that low-level program behaviour is equivalent
to the high-level behaviour.

Sub-typing

Garbage Collection

Value Semantics

Iterators

Benchmarks, benchmarks …

Concurrency and parallelism

Conclusion
• OO sequential language
• Ownership-like annotations
• Splitting annotations

• Pooling
• Splitting
• Pointer Compression
• Pool iterators
• Copying GC

• Interface for the low-level
framework with instructions to
work with pools

• Translation using the layout
annotations

OHMMHL

OHMMLL

C Framework

Compilation

• OO sequential language
• Ownership-like annotations
• Splitting annotations

• Translation using the layout
annotations

• Interface for the low-level
framework with instructions to
work with pools

Thank you!

Questions?

