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Abstract
Previous works on leak-tolerating GC and write-rationing
GC show that most reads/writes in an application are con-
centrated to a small number of objects. This suggests that
many applications enjoy a clear and stable clustering of hot
(recently read and/or written) and cold (the inverse of hot)
objects. These results have been shown in the context of Jikes
RVM, for stop-the-world collectors. This paper explores a
similar design for a concurrent collector in the context of
OpenJDK, plus a separate collector to manage cold objects in
their own subheap. We evaluate the design and implement-
ation of ThinGC using algorithms from JGraphT and the
DaCapo suite. The results show that ThinGC considers fewer
objects cold than previous work, and maintaining separate
subheaps of hot and cold objects induces marginal overhead
for most benchmarks except one, where large slowdown due
to excessive reheats is observed.

Keywords: read/write rationing GC, ZGC, heap partition,
hot/cold classification

1 Introduction
Previous work on leak-tolerating GC [5] shows how rarely
accessed objects can be offloaded from DRAM to disk to
delay (or even survive) out-of-memory error and shrink GC
working set. Later work on write-rationing GC [1] explores
this idea further in a heterogeneous system with both DRAM
and Non-Volatile Memory (NVM) to maximize NVM usage
while retaining original performance (NVM is slower) and
longer NVM lifetime (when NVM degrades on writes). Both
works suggest that many applications enjoy a clear and stable
clustering of “hot” (recently read and/or written) and “cold”
(the inverse of hot) objects, which could be leveraged using
stop-the-world collectors in Jikes RVM.
In this paper, we use a concurrent collector in the con-

text of OpenJDK and divide the heap into two parts, hot
and cold subheaps, accommodating hot/cold objects, respect-
ively. This design paves the way for special treatment of
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the cold subheap, such as backing it on slower memory, or
memory that degrades quicker than DRAM, or running pro-
grams which require a heap size larger than available DRAM
(a well-known “no-no” [15]). We call our collector ThinGC
(Thermal Insulation GC). We augment the load barrier from
ZGC to track objects hotness, and try to offload cold ob-
jects from hot subheap to cold subheap. Objects in the cold
subheap are never directly accessed by mutators; instead,
loading of a pointer to such an object is trapped by the load
barrier which triggers a reheat that moves the object into hot
subheap. These design decisions are very close to Melt [5]. In
a further extension to prior work, we manage the cold stor-
age via a separate tracing collector that supports (optional)
compaction.
This paper makes the following contributions:

– We propose a concurrentwrite-rationing and read-rationing
GC design based on a simple hot–cold object classification
(§ 3) as an extension of ZGC (§ 2). Our design does not
require special OS or hardware support.

– We provide an implementation of ThinGC in OpenJDK.
– We validate our design choices using algorithms from the
JGraphT library and the DaCapo suite, and find marginal
overhead for most benchmarks. (§ 4).

2 A ZGC Primer
ZGC is a non-generational, mostly concurrent, parallel, mark-
compact GC algorithm implemented in HotSpot JVM for
64-bit architectures, included since OpenJDK 11 as an ex-
perimental feature. ZGC departs significantly from previous
GC algorithms in HotSpot by utilizing load barriers instead
of write barriers in order to facilitate concurrent compac-
tion. During compaction, GC threads may move an object
without updating its incoming pointers, which then effect-
ively become dangling. Mutators on accessing them will be
trapped, and load barrier will look up the new location of
the object for access. To keep track of which pointers might
be dangling, ZGC uses higher-order bits in pointers. Each
pointer has four “meta bits”: Finalizable (F), Remapped (R),
Marked1 (M1), and Marked0 (M0). The F bit is related to
objects with finalizers, whose implementation is orthogonal
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to this work, so we omit its discussion, while all other meta
bits will be elaborated as we go through all phases in ZGC. In
this paper, we follow ZGC parlance and talk about metadata
as “colors”. ZGC essentially uses two colors: good (pointer
is valid) and bad (pointer is potentially invalid). A pointer’s
color is determined by the status of the meta bits: F, R, M1,
and M0. A good color is represented as one of R, M1, M0
meta bits set and the other three unset, which gives three
possibilities of good colors. There is always a single, globally
agreed upon, good color from the three possibilities, set in a
STW pause. Once the good color is decided, all other colors
are considered “bad”. Object creation always yields a pointer
with the current good color.

A load barrier is code executed when a pointer is loaded
from the heap onto the stack, e.g., when accessing 𝑥 .𝑓 (as-
suming 𝑓 is not of primitive type); the load barrier is called
on 𝑥 .𝑓 , not 𝑥 , because 𝑥 has already gone through the load
barrier when it’s loaded onto the stack. If the loaded pointer
has good color, the fast path of the load barrier is taken,
which is effectively empty, otherwise the slow path. The
slow path calculates the corresponding pointer with good
color, and performs self-healing, meaning it replaces the old
pointer with the new and good-colored pointer, so that sub-
sequent accesses take the fast path. Regardless which path
is taken, a pointer with good color is returned. The logic in
mark barrier is more or less the same with load barrier ex-
cept that mark barrier is used by GC threads during marking,
while load barrier is used by mutators.
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Figure 1. STW pauses and concurrent phases in ZGC.

We now continue by describing the STW pauses and con-
current phases of ZGC in left-to-right order of Fig. 1.

STW1: The Start of the ZGCCycle. The start of the ZGC
cycle is a STW pause, which performs four major tasks: de-
cide on the good color (M0 or M1 bit set by alternating selec-
tion); mutators’ thread-local allocation buffers are “flushed”
so that newly allocated objects from now will be placed in
fresh pages; all roots, after being tinted with good color,
are pushed to mark stacks (for parallel processing by GC
threads); and the GC sequence number is incremented (grows
monotonically). The current GC sequence number is used as
the birth cycle when a page is created, as shown in Fig. 2.
If the current GC cycle is 𝑁 , pages of birth cycle 𝑁 are

called allocating pages (mutators are potentially allocating
objects on those pages). ZGC treats all objects on allocating
pages alive. In other words, ZGC only collects garbage ob-
jects on pages created prior to the current STW1, birth cycle

smaller than𝑁 ; those pages are called relocatable pages, since
objects on them may be relocated as part of compaction.
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Figure 2. GC sequence number is incremented in STW1,
and its current value determines the birth cycle of a page.

Marking/Remapping (M/R). As the name implies, two
main tasks are performed in this phase, marking and remap-
ping. Remapping deals with invalid pointers due to relocated
objects from previous GC cycle, which we will cover later,
so we only focus on marking here. GC threads consume the
mark stack, and try to mark the popped objects. Marking
can fail due to concurrent execution; when it succeeds, the
current thread will update the liveness info of the associated
page. The liveness info is the number of live bytes on a page
and is used to select pages on which objects will be evicted;
more is covered later. Additionally, all children (fields of
reference type of the just-marked object) are pushed to the
mark stack.

STW2. The marking phase terminates when mark stacks
become empty.1 With M/R phase over, we know the liveness
info for all relocatable pages.

Reference Processing (RP). The reference processing phase
handles Java’s soft, weak and phantom references. This phase
is not affected by this work (nor this work by it), and we
thus omit it from the paper.

Selection of Evacuation Candidates (EC). The evacu-
ation candidates is a collection of sparsely populated relo-
catable pages. By relocating all live objects on the EC pages
into other pages, all EC pages can be reclaimed. The object-
ive of this phase is to construct such evacuation candidates.
Relocatable pages with live objects are added to a candid-
ates list, and pages with zero live objects are reclaimed right
away. The candidates list is sorted by live bytes. Pages from
the sorted candidates list will be added to the evacuation
candidates set subject to the fragmentation limit threshold.

STW3. In STW3, the good color is changed to the R bit
on. A pointer of this color is guaranteed to not point to
objects on pages in EC. This change of good color effectively
invalidates all pointers in the heap causes mutators to take
the slow path on the first subsequent load. STW3 visits roots
1There are other tasks performed here, which calls for a STW pause, but
they are omitted due to little connection to this work.
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and relocates all roots pointing to EC, and otherwise just
changes its color to the good color. In the end, the roots will
have good color. This establishes the invariant that mutators
never see pointers into EC.

Relocation (RE). After STW3, the system is ready to per-
form concurrent relocation. This happens by GC threads
migrating all live objects in EC, page by page. Forwarding
tables are used to record old-to-new address mapping. For-
warding tables live outside of each page so that relocated
pages could be reclaimed right away. Mutators that access an
object concurrent with its relocation will hit the slow path of
the load barrier, as the pointer’s color will invariably be bad.
In this case, mutators help the GC thread perform the relo-
cation, potentially competing with other relocating threads.
This is captured at a linearization point in the forwarding
table. Threads that fail the race will read the new address
from the forwarding table. Once such an entry exists, mutat-
ors hitting the slow path only need to query the forwarding
table, skipping the relocation (copying).
Once all objects in EC are relocated, the ZGC cycle ter-

minates, but there may still be pointers in the heap pointing
to objects which have been moved. Those will be fixed either
by the next mutator access or GC threads performing remap-
ping in the M/R phase of the next ZGC cycle.

3 ThinGC
ThinGC divides memory into two separate spaces, hot and
cold storage. Each space is managed by its own collector
running independent of the other, and no collection goes
through the entire heap. Reminiscent of cache hierarchies,
the hot storage is occupied mostly by hot objects (recently
accessed by the mutators), and the cold storage only con-
tain cold objects (the inverse). Objects are allocated in hot
storage and may be frozen, as part of relocation, into cold
storage. There are no accesses—neither reads nor writes—to
objects in cold storage from mutators. Instead, such accesses
are trapped by the load barrier and cause the object to be
reheated—copied into hot storage—before the access is per-
formed. This maintains the invariant that mutators never
see pointers into cold storage. An overview of the design
of ThinGC is shown in Fig. 3. Apart from freezing, CSGC is
the only source of mutation in cold storage (dominated by
compaction which is optional).

This section describes how we extend ZGC to support hot
and cold storage without additional STW pauses. As shown
in Fig. 4, we add two new phases: freeze-relocation, which lies
within original ZGC relocation phase, and freeze-patching,
which occurs right after relocation.

3.1 Identifying Hot/Cold Objects
We consider an object hot if it meets one of the two con-
ditions: a) the difference between its page birth cycle and
the current GC cycle is less than 𝑁 ; b) it was accessed by a

Freeze

Reheat
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ZCG 
Roots

CSGC 
Roots

(Stack, 
globals, 

etc.)

(Derived 
each ZGC 

cycle)

Direct pointer

Indirect pointer

ZGC & CSGC (Structural)

Figure 3. ThinGC overview. Hot storage (left) managed by
ZGC and cold storage (right) managed by CSGC. Each space
keeps its own rootset, allowing them to be GC’d individually.
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Figure 4. ThinGC extensions to ZGC.

mutator during the past𝑊 GC cycles. Otherwise, it is con-
sidered cold.𝑁 and𝑊 default to 2 and 1, respectively, and can
be controlled by runtime flags (MinColdAge and HotWin-
dows). Page birth cycle is set to be the current GC sequence
number when the page is created. Since GC sequence num-
ber is only incremented in STW1 (see Fig. 2), 𝑁 = 2 ensures
that objects are not considered cold unless they live for at
least one non-GC period, which filters out short-lived ob-
jects. A “non-GC period” is usually much longer than a GC
cycle, as shown in Fig. 5. Thus, the default value of 𝑁 could
avoid prematurely freezing objects that will soon die.
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Figure 5. Objects need to survive for at least one non-GC
period to be qualified for freezing. In Cycle 𝑁 , objects on
pages of birth cycle 𝑁–2, are eligible for freezing if they are
not recently accessed by mutators.

We extend the ZGC load barrier to track whether an object
was recently accessed; we mark objects as hot on the slow
path of the load barrier (which will be hit on the first mutator
access in each ZGC cycle), and set objects (not pointers) with
the R bit on in their pointers as hot on the slow path of
the mark barrier. Nothing is changed on the fast path. This
means that an object is hot if it has been accessed bymutators
somewhere between the starting of the previous relocation
phase and the starting of the current relocation phase, as
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shown in Fig. 6.𝑊 controls how many such windows we
would like to accumulate before resetting the hotness info. In
other words, this flag controls how often freezing happens.
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Figure 6. Hot window: mutator accesses from the start of
the previous relocation phase to the start of the current
relocation phase mark an object as hot.

Since objects accessed by mutators are only identified as
hot on the slow path, GC threads may suppress hot marking
by self-healing a good-color pointer before a mutator loads it.
This may lead to missing some hot objects. To remedy this
situation, we introduce another color in the mark barrier;
instead of self-healing a pointer to good color, we self-heal
it to this new color. This will cause mutators loading the
pointer to hit the slow path and mark the object as hot. This
way, a pointer with good color always indicates that the
mutators recently accessed it, and no hot objects are missed.
We add a flag to dump all relocatable objects and their

recorded hotness status every ZGC cycle.2 By analyzing the
logs, we can see how hotness status changes for an object,
which can be used to answer questions like how often objects
alternate between being hot and cold, the longest duration
objects stay hot, etc. A property of particular interest is
whether cold objects stay cold, whichwe call inverse temporal
locality. The cold-to-hot transition (reheating) percentage as
defined below reflects this property. We discuss our findings
in the evaluation section.

reheating percentage = total cold-to-hot transitions
total number of relocatable objects

3.2 Revisiting Evacuation Candidates Selection
ZGC selects sparsely populated pages as Evacuation Candid-
ates (EC) to maximize reclaimable memory and minimize
copying overhead. Now that relocation bears an additional
mission, we need to rethink how to construct EC. In addition
to the sparsity criterion, a page that is mostly populated
with cold objects could be a good choice of EC as well in
ThinGC, as cold objects can be moved to cold storage, which
releases memory in hot storage. In other words, cold objects
are essentially the same as dead objects. We call pages added
to EC because of large number of cold objects cold pages.

2In order to minimize interference with normal application behavior, this
dump is done in a STW pause.

Cold objects on cold pages are not completely “free” as
dead objects; actual copying still needs to be perform as
they are frozen. To allow tuning this behavior, we expose a
runtime flag (ColdAsDead) that assigns a [0.0, 1.0] weight
to cold objects in terms of their liveness, and set a hard cap
on the number of cold pages in EC to prevent RE phase from
growing too long. A ColdAsDead value of 1.0 means that all
cold objects are counted as dead objects. The default value is
0.0 which preserves the original EC selection logic treating
all cold objects as live objects.

3.3 Freezing Objects
Freezing an object 𝑜 consists of two steps:

1. freeze-relocation: relocating 𝑜 from hot to cold storage
2. freeze-patching: patching 𝑜’s fields

In RE phase, hot objects are relocated within hot storage
(standard ZGC behavior) and cold objects in hot storage are
relocated to cold storage (freeze-relocation). Those frozen
objects are added to the CSGC roots (explained in § 3.6 and
important for independent GC in the cold storage) and will
be further processed in freeze-patching step.

As objects in hot storage are subject to relocation (within
hot storage or to cold storage), direct cold-to-hot pointers
may become stale. To remedy this, we introduce an additional
level of indirection for such pointers in freeze-patching.The
actual patching to a pointer depends on what kind of object
it points to. There are totally three possibilities: object is. . .

FP1 . . . already in cold storage;
FP2 . . . relocated into cold storage in the same phase;
FP3 . . . in DRAM.

The first case does not need patching; in the second case, we
patch the field by updating it to point to the object’s new
address in cold storage; in the last case, we save the original
address in a remembered set (which we refer to as remset),
and patch the field by updating it with the corresponding
remset index (a more detailed explanation follows in § 3.5).

Freeze Patching
Remset CSGC 

Roots

A

C

A’

D’

C’

B

DRAM Cold Storage

Figure 7. Overview of
freeze-patching.

Fig. 7 shows freeze-patching:
objects 𝐴, 𝐵, and 𝐶 reside
in hot storage, and object 𝐷 ′

in cold storage. 𝐴 and 𝐶 are
identified as cold and relo-
cated into cold storage, de-
noted as 𝐴′ and 𝐶 ′. This adds
𝐴′ and 𝐶 ′ to the CSGC roots.
Subsequently, their fields are
patched according to the three
cases above. 𝐴’s pointer to
𝐷 ′ corresponds to FP1, 𝐴’s
pointer to 𝐶 corresponds to
FP2 and 𝐴’s pointer to 𝐵 cor-
responds to FP3.
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3.4 Reheat
ThinGC avoids mutating objects in cold storage. When a
mutator loads a pointer pointing into cold storage, the frozen
object it points is moved into the hot storage (keeping the
invariant that a mutator only sees objects in hot storage).
This requires that mutators hit the slow path of a load barrier
for all cold pointers, which is achieved by introducing one
more metadata bit in pointers.

Reheat is reminiscent of ZGC DRAM-to-DRAM relocation
and uses the forwarding table. However, we do not record
an object’s final address in the forwarding table as is done
in ZGC, because the address is unstable. Instead, the address
after reheat is added to remset, and the returned index (more
on this in § 3.5) is recorded in the forwarding table. This
indirection is needed to keep the address in remset updated
while avoiding remapping pointers in cold storage.

3.5 The Remembered Set (remset)
The ThinGC remembered set serves twomain purposes. First,
it is used to capture cold-to-hot pointers, which are treated
as additional roots whenever ZGC runs, similar to many gen-
erational GC algorithms. Second, when an object is reheated,
its fields pointing into the remset are patched with valid
addresses from the remset, as if this object has never left hot
storage. In order to fulfill these two purpose, Two invariants
are maintained: all cold-to-hot pointers are recorded in rem-
set, and these pointers always point to the updated location
of an object. The latter is achieved by remapping each entry
in remset after ZGC relocation.

The remset is populated in freeze-patching and reheating.
During freeze-patching, if a field of a just frozen object holds
a pointer into hot storage (FP3 in § 3.3), it is added to the
remset. When an object is reheated, it is added to remset
unconditionally, because it is possibly referenced by other
objects in cold storage. In both cases, a new record is added
to the remset (if it does not already exist), capturing point-
ers from cold to hot storage, maintaining the first remset
invariant.

Entries in the remset are updated after the corresponding
objects are relocated. There are three possible cases on the
object relocation, explained below and shown in Fig. 8:

Hot→ Cold remapping is performed eagerly, along with
the relocation so that a reheat immediately following
a freeze could still keep the address up to date (reusing
the same array slot)

Cold → Hot aka reheat, remapping is performed eagerly,
and the forwarding table is used to hold the corres-
ponding index

Hot→ Hot no update; instead, the entry is remapped at
the beginning of a ZGC cycle, which is consistent with
other roots of ZGC.

After an object is reheated, its fields, if pointing into rem-
set, can be patched to the latest address by querying the
remset, because of the second invariant.

Remset

A A’

DRAM Cold Storage

Reheat
Remset

A A’

DRAM Cold Storage

(a) Hot→ Cold

Remset

A A’

DRAM Cold Storage

Reheat
Remset

A A’

DRAM Cold Storage

(b) Cold→ Hot

Remset

A

DRAM Cold Storage

Reheat

A’

(c) Hot → Hot

Figure 8. Remembered set update. Dashed and solid arrows
denote state before and after ZGC relocation, respectively.

3.6 Cold Storage Garbage Collection (CSGC)
Objects in the cold storage are collected separately from
those in the hot storage, which are managed by ZGC. This
reduces the work spent in marking and relocation for ZGC.
A CSGC cycle runs concurrently with the ZGC cycle and a
single CSGC cycle can span multiple ZGC cycles. After ZGC
marking, a new CSGC cycle starts unless there is already
an active CSGC cycle. CSGC runs on a dedicated thread. It
publishes its status after finishing a complete cycle and waits
for the next invocation. The goals of CSGC are:

1. Identify unused remset slots for reclamation to reduce
the remset footprint and remove ZGC roots.

2. Remap pointers to reheated objects in cold storage.
3. Reclaim memory in cold storage (see below).
Marking in CSGC starts with a root set (explained shortly)

and proceeds recursively through the objects in cold stor-
age and stops on the hot–cold boundary, marking the cor-
responding remset slot reachable which makes it a root in
the subsequent ZGC cycle. While marking is in progress, a
mutator could trigger a reheat, and alter the object graph.
To preserve the reachability of remset slots, despite concur-
rent reheating, we use Yuasa’s snapshot-at-the-beginning
write barrier technique [20]. This ensures that all entries in
remset reachable in the beginning of a ZGC cycle will be
marked even with concurrent reheating. In addition to mark-
ing, CSGC performs remapping of reheated objects, from
address in cold storage to remset index. These are the only
writes to cold storage performed by CSGC after freezing.

CSGC roots. CSGC roots are all hot-to-cold pointers and
they are discovered in ZGC during marking. In STW2, right
after M/R phase (recall Fig. 1), such invariant that all pointers
from hot to cold storage are captured in the CSGC roots is
established. Now a new CSGC cycle can be started (unless
one is already running).

Compaction in theCold Storage. CSGC compaction bor-
rows many ideas from ZGC compaction: candidates for evac-
uation are identified based on liveness info, adding them
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into EC, and relocating objects in EC. CSGC compaction
moves objects around in cold storage, mirroring normal ZGC
relocation. A forwarding table is used, which is the same
forwarding table used for reheat. In other words, we use the
forwarding table as the linearization point to determine if
an object is moved to hot storage (in case of a reheat) or
moved to another location in the cold storage (in case of
compaction). After CSGC compaction is done, all pointers,
both in hot and cold storage, into CSGC EC need to be up-
dated, which will happen in the next ZGC M/R phase, and
CSGC M/R phase. CSGC compaction can be turned on or off
with a flag, CSCompaction, and is off by default.

3.7 Cycles Across Hot/Cold Boundary
ThinGC does not have memory leaks from cycles across the
hot–cold boundary, regardless of whether the hot and cold
storages are collected separately or not (i.e., cold storage
simply grows). Consider an object in hot storage that is kept
alive only by pointers from cold storage. As such an object
cannot be accessed by mutators, it is effectively cold and will
be frozen (moved to cold storage) during next relocation if
the page it resides on is selected for relocation. Thus, any
cycle will now be in cold storage only.

3.8 Known Limitations
For brevity, these are discussed in Appendix A.

4 Evaluation
All benchmarking is done on an Intel® Core™ i7-4600U CPU
@ 2.10GHz with 2 cores (2 hyper-threads/core), 12GB RAM,
32KB L1, 256KB L2, 4MB L3, running Debian 11 (bullseye)
with Linux kernel version 5.4.19 and GCC 9.2.1. The Open-
JDK commit we build ThinGC on is authored on 2020-02-06.

In order to explore the effect of various runtime flags and
how they interact with each other, we run all benchmarks in
9 configurations as shown in Table 1. Config 0 is our baseline,
unmodified ZGC from the OpenJDK commit on which we
build ThinGC; config 1 is built from ThinGC code base, but
all flags are turned off, which should behave the same as
the baseline. Config 2 turns on hotness tracking, but does
not use it. Configs 3–4, 5–6, and 7–8 are ThinGC with and
without cold storage compaction for different ColdAsDead.

4.1 Data Collection and Visualization
In order to study the impact of ThinGC, we collect data on
three aspects: execution time, ZGC working set, and data
moved into/from cold storage. Next, we go through each of
them and describe how we collect the data and visualize it.

Execution Time. For each config in Table 1, we measure
the wall-clock execution time of 31 JVM launches. The result
for the first is dropped, because it may have accumulative
effective (e.g. loading of dynamic libraries) on the subsequent
runs. We visualize the execution time for the last 30 runs

Table 1. Benchmarking configurations. Config 0 is our
baseline: unmodified ZGC. 0/1 means a flag is off/on. As
for ColdAsDead, we pick 0, .5 and 1. Config 2 collects hot-
ness info but does not use it.

Tuning Knobs ZGC ThinGC Configurations
0 1 2 3 4 5 6 7 8

HotWindows n/a 0 1 1 1 1 1 1 1
ColdAsDead n/a 0 0 0 0 .5 .5 1 1

ThinGC n/a 0 0 1 1 1 1 1 1
CSCompaction n/a 0 0 0 1 0 1 0 1

using box plots [14], as exemplified by the top plot in Fig. 10.
The middle plot shows the mean estimate along its 95% con-
fidence interval, constructed from bootstrap sampling, pick-
ing the 2.5 and 97.5 percentiles. If the confidence interval of
two configurations do not overlap, then we can conclude, with
a confidence level of 95%, that there is a significant difference
between the two configurations. The bottom plot shows the
relative difference against the baseline, using the mean es-
timate from previous step. Negative number means reduced
execution time. This methodology is taken from [11].
Due to the accumulative effect of freezing/reheating in

ThinGC, it’s hard to exclude it within a single JVM launch, so
for DaCapo suite, we are forced to forgo the built-in iteration
logic, only running a single iteration and reporting the wall-
clock time from start of the VM to its termination. This
means that warm-up time is included in our measurements.

ZGC working set. We use ZGC’s built-in and our instru-
mented logging to record the number of ZGC cycles, and
size of relocatable objects for each cycle. For each run, we
calculate the max and average size of relocatable objects.
Fig. 10 shows how these three metrics are visualized. The
relocatable size is obtained through our instrumentation;
hence, not available for config 0.

Frozen/Reheat data. We add instrumentation to record
the sizes of frozen and reheated objects. For configs 3–8
where ThinGC is enabled, we collected the total size of frozen
and reheated objects for each run. One example of such
metrics is shown in Fig. 10, and in the same plot, they are
normalized against the average relocatable size and frozen
size, respectively. Additionally, before running the bench-
marks with configs from Table 1, we run the benchmarks
once to calculate the reheating percentage in order to check
the inverse temporal locality property as mentioned in (§ 3.1).

Per-Benchmark Figure Layout. For each benchmarkwe
present a group of 3 plots as three subfigures (a, b, c), each
corresponding to one aspect aforementioned; laid out thus:

6



ThinGC ISMM ’20, June 16, 2020, London, UK

Execution Time (a) ZGC Statistics (b) Frozen/Reheat (c)
Wall-clock time in
seconds

Average GC cycles
per run

frozen size and
ratio–"–, w/ mean and

confidence interval
Average of average
relocatable size reheated size and

ratio–"–, normalised
against ZGC

Average of max
relocatable size

4.2 Graph Algorithms with JGraphT
We run three benchmarks from from the JGraphT library [13]:
(weakly) connected components (CC) (BiconnectivityIn-
spector), which implements biconnected components al-
gorithm [12], maximal clique (MC) (BronKerboschClique-
Finder), which implements the Bron-Kerbosch maximal
clique enumeration algorithm [16], and page rank (PR) (Page-
Rank), which contains an iterative implementation of page
rank algorithm. Inspired by recent GC work [18, 19], we use
the graph datasets uk-2007-05@100000 and enwiki-2018 from
Laboratory for Web Algorithms (LAW) [3, 4]. We implement
a minimal driver which does nothing more than calling APIs
from LAW to load the graph, inserting all nodes to a new
graph from JGraphT, and calling a method from JGraphT on
the graph where almost all processing time is spent.

Table 2. LAW Graph nodes and edges.

Dataset Algorithm Nodes Edges Heap (MB)

UK

– 100 000 3 050 615 n/a
CC 28 128 900 002 1024
MC 5099 239 294 4096
PR 100 000 3 050 615 2048

enwiki

– 5 616 717 128 835 798 n/a
CC 28 126 80 002 400
MC 43 354 170 660 4096
PR 739 053 5 000 002 4096

For some algorithms, using the complete graph is ex-
tremely time consuming, so we only use the partial graph
instead. The actual graph size used and heap size for each
benchmark is detailed in Table 2. Table 3 shows the reheat-
ing percentage, and we can see that maximal clique (MC)
stands out, while others have relatively small number for
this metric. Fig. 10–Fig. 15 show the evaluation results. In the
top 2 subplots of subfigure (c) in each group, we can see that
there are very few frozen objects using the default EC selec-
tion criterion (configs 3 and 4), while this number increases
significantly when we start treating cold objects as dead
ones. This indicates that large number of cold objects reside
on fairly populated pages. For different benchmarks with
different graphs, the ratio between frozen size and average re-
locatable size differs, roughly falling in the range [15%, 100%].
In the bottom 2 subplots of subfigure (c) in each group, we

can see that reheating occurs rarely (<10%) for (weakly) con-
nected components (CC) and page rank (PR), which indicates
that these benchmarks have clear and stable cold–hot clas-
sification, and this is consistent with what’s shown by the
reheating percentage metric. The reheated ratio formaximal
clique (MC) is decent (~20%), smaller than what’s reported
by the reheating percentage metric. This is probably because
reheated objects are placed in fresh pages, which keeps them
hot for at least one non-GC period, preventing from frequent
frozen-to-reheating transition.
The large execution difference, shown in subfigure (a),

may seem a bit surprising, since it’s not aligned with the
reheated ratio. The real cause is the affected program locality
in configs 5–8. As ColdAsDead increases, more pages are
selected for relocation. Mutators accessing objects in those
pages will relocate them, which may or may not improve
locality, depending on if such access is stable and recurring.
Execution time, as an aggregated metric, shows the combin-
ational effect from changed program locality and reheating
overhead. Probably due to the intrinsic irregularity of graph
traversal, program locality is the dominating factor here,
while the reheating overhead is comparatively low.

4.3 DaCapo Suite
Next we look at the DaCapo benchmarks [2], version 9.12-
bach-MR1. Not all DaCapo programs run on JDK 13 (the
release ThinGC is built upon). Thus, we include the follow-
ing programs: h2, jython, sunflow, xalan, lusearch-fix, pmd,
avrora, fop, and luindex. (There is an open issue concerning
a potential concurrency bug in tradebeans and tradesoap,
so they are not included.) Since ThinGC focuses on long-
lived objects, short-running applications are not intended
targets. We select the largest input size for each benchmark
(different benchmarks in DaCapo support different input
size) in order to prolong the running time. The input size
selected and heap size are shown in Table 3. Heap sizes are
selected so that a sufficient number of GC cycles occurs.
Table 3 shows that most benchmarks have a relative small re-
heating percentage except for h2. Figs. 16 to 20 show results
for the DaCapo benchmarks (except fop, luindex, lusearch-
fix, and pmd, since they run under 5 seconds). Except h2, all
benchmarks have large portion of cold objects frozen (the
ratio with average relocatable size in range 30%–120%) with
low reheated ratio. Consequently, the execution overhead
is marginal (<2%); there’s no significant difference due to
overlapping confidence intervals.
h2 exhibits high number of reheats, and large execution

overhead (80%) is observed, which indicates that it does not
have a stable cold–hot classification, and this is consistent
with the reheating percentagemetric. It is possible to tune the
hotness collection window width and the freezing frequency
using HotWindows. Fig. 21 shows the result of increasing
HotWindows to 2 from 1 (default). As the frozen size is
reduced, so is reheating, decreasing the execution overhead

7
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to 20%. Melt [5] uses an older release of DaCapo, which does
not include h2, and the result for h2 is missing in KG-W [1],
so we are unable to compare the high reheating for h2 with
others’.

Table 3. Reheating %-age (see p. 4) for checking inverse tem-
poral locality, remset memory overhead, input and heap size.

Benchmark Reheating Remset Input Heap (MB)

CC (uk) 1.0 % 8.6 %

See Table 2

CC (enwiki) 0.3 % 3.1 %
MC (uk) 46.9 % 4.1 %
MC (enwiki) 59.3 % 5.5 %
PR (uk) 0.1 % 9.3 %
PR (enwiki) 1.4 % 9.6 %

h2 113.9 % 4.8 % huge 6000
jython 6.8 % 0.9 % large 3000
xalan 22.3 % 3.2 % large 1800
sunflow 3.3 % 2.4 % large 1200
lusearch-fix 1.6 % 1.9 % large 600
pmd 2.0 % 3.2 % large 500
avrora 2.9 % 2.3 % large 200
fop 0.2 % 1.1 % default 150
luindex 0.0 % 0.6 % default 80
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Figure 9. %-age of cold and hot objects per cycle in h2.

In order to investigate the large number of reheating in
h2, we rerun h2 with logging to capture per object hotness
info every GC cycle. The cold/hot ratio for each GC cycle is
shown in Fig. 9, and we can see that a reasonable portion of
objects are hot, and in the last GC, almost all objects become
hot, which explains the large number of reheats observed.

4.4 Impact of Compaction
Recall in Table 1, we enable cold storage compaction, CSCom-
paction for configs 4, 6, and 8, and the corresponding com-
paction off configs are 3, 5, and 7. As is visible from the plots

in Figs. 10 to 21, compaction in cold storage has no visible im-
pact on the execution time, which can probably be attributed
to the fact that ZGC does not need to “wait” for CSGC.

4.5 Space Overhead of the Remembered Set
In order to assess the space overhead of the remset, we re-
cord the number of remset entries in every ZGC cycle, and
calculate the average. Assuming each entry takes 16 bytes,
the total remset space overhead normalized by frozen bytes3
is shown under the Remset column of Table 3. The percent-
age is rather small, <10% for JGraphT, and <5% for DaCapo,
reflecting a small number of cold-to-hot pointers.

4.6 Summary
Results of JGraphT andDaCapo show thatmost long-running
benchmarks exhibit clear and stable cold-hot classification
(low reheating percentage and reheated ratio), withmaximal
clique (MC) and h2 notable exceptions. When ThinGC is en-
abled, especially with non-zero ColdAsDead, the execution
time is influenced by both changed program locality and re-
heating overhead, making it harder to isolate the effect of the
latter. For JGraphT, the changed program locality plays more
significant role in impacting the execution time, while the
effect of reheating overhead is almost invisible. For DaCapo,
less influenced by altered program locality, show large exe-
cution time degradation only in h2, and both execution time
and reheating overhead drops with less frequent freezing.

5 Related Work
This work is most similar to Akram et al.’s work on a write-
rationing GC, KG-W [1] and Bond and McKinley’s work
on tolerating memory leaks, Melt [5]. Table 4 overviews
similarities and differences with these works.

Table 4. Overview of closest related work.

Rationing
Reads Writes Reheats GC VM

KG-W [1] ✗ ✓ On GC STW Jikes RVM
Melt [5] ✓ ✓ On access STW Jikes RVM
ThinGC ✓ ✓ On access Conc. OpenJDK

Akram et al. [1] show that a very small number of objects
see a majority of all writes, and use a moving, copying col-
lector (GenImmix) to relocate objects based on monitoring
writes to objects in a portion of the heap. Instead of reheating
objects in cold storage on access, they wait until the next GC,
which does not isolates the cold storage from direct mutator
access. They build on top of Jikes RVM. ThinGC is concur-
rent, also read-rationing, and implemented in OpenJDK.
3We are using frozen bytes from config 5; results are very similar for configs
6–8. Configs 3–4 are less interesting since most cold objects are not frozen
because of the default ZGC EC selection criterion.
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Figure 10. Connected components (CC) with JGraphT using the uk dataset.
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Figure 11. Connected components (CC) with JGraphT using the enwiki dataset.
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Figure 12. Bron-kerbosch (MC) algorithm with JGraphT using the UK dataset.
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Figure 13. Bron-kerbosch (MC) algorithm with JGraphT using the enwiki dataset.
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Figure 14. Page Rank (PR) algorithm with JGraphT using the UK dataset.
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Figure 15. Page Rank (PR) algorithm with JGraphT using the enwiki dataset.
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Figure 16. DaCapo’s h2.
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Figure 17. DaCapo’s jython.
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Figure 18. DaCapo’s xalan.
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Figure 19. DaCapo’s sunflow.

15

15.5

16

16.5

17

17.5

18

0 1 2 3 4 5 6 7 8

w
a
ll-

c
lo

c
k
 t
im

e
 (

s
)

avrora

15.7

15.8

15.9

16

16.1

0 1 2 3 4 5 6 7 8m
e
a
n
 e

s
ti
m

a
te

 &
 C

I 
(s

)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8n
o
rm

a
liz

e
d
 t
o
 C

o
n
f.
 0

 (
%

)

Config ID

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

#
G

C
 c

y
c
le

s

avrora

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

a
v
g
 r

e
lo

c
a
te

d
 (

M
B

)

N/A

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8

m
a
x
 r

e
lo

c
a
te

d
 (

M
B

)

Config ID

N/A

0

2

4

6

8

0 1 2 3 4 5 6 7 8
fr

o
z
e
n
 (

M
B

)

avrora

N/A N/A N/A

0

20

40

60

80

0 1 2 3 4 5 6 7 8fr
o
z
e
n
/a

v
g
 r

e
lo

 (
%

)

N/A N/A N/A

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8

re
h
e
a
te

d
 (

M
B

)

N/A N/A N/A

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8re
h
e
a
te

d
/f
ro

z
e
n
 (

%
)

Config ID

N/A N/A N/A

Figure 20. DaCapo’s avrora.
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Figure 21. DaCapo’s h2, with HotWindows=2.
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Bond andMcKinley’s [5] work on toleratingmemory leaks
(Melt) uses a very similar design, moving cold (called “stale”
in their paper) objects out of the GC working set. Load bar-
riers are used to identify cold objects and to trap accesses to
cold storage and reheat (called “activate”) cold objects. They
evaluate using DaCapo, and in their results, a significant part
of heap is cold—the size in stable space could be up to 5𝑥
larger than the heap. In our case, the cold storage is much
smaller, [15%–120%]. The explanation for this large discrep-
ancy is not obvious, considering the significant differences
on the implementation level, VM (HotSpot vs Jikes RVM),
hot storage GC (concurrent vs STW), cold storage memory
(GC vs none), etc. That the Melt evaluation was performed
on a uniprocessor might also be contributing.
Chen et al.’s [6] work on heap compression for memory-

constrained environments allows an application to run in a
heap smaller than its footprint. The proposedMark–Compact–
Compress (MCC) algorithm compresses objects when heap
compaction is not sufficient for creating space for the current
allocation request, and decompresses themwhen accessed by
mutators. Our freeze–reheat design is similar in spirit to the
compression–decompression, but there are two key differ-
ences. First, frozen objects are not traversed by the main GC
(ZGC in our case); instead, their existence is simulated by the
remembered set. Second, only objects that are not accessed
recently are frozen, in contrast to all live objects are com-
pressed in MCC. Compressing cold objects is an interesting
idea, which we leave for future work.
Pauseless GC [8] and its generational successor, C4 [17],

use reference metadata to trigger load barrier, which is very
similar to colored pointer in ZGC, so the design of ThinGC
should be applicable as well.

Cross-component GC [9] introduces an algorithm for GC
over component boundaries, where each component has its
own collector. The per-component GC is similar to ThinGC,
but it assumes homogeneousmemory access, because a cross-
component garbage collection includes synchronous tracing
in both components.

Shenandoah [7, 10] is another concurrent compacting col-
lector in OpenJDK. We have not investigated how easy it
would be to extend Shenandoah to track hotness, but if this
information could be obtained cheaply, we expect Shenan-
doah could be used in place of ZGC for ThinGC extension.

6 Conclusion
We have presented ThinGC, a concurrent, read- and write-
rationing garbage collector implemented on-top of ZGC in
OpenJDK. ThinGC partitions the heap into hot-cold stor-
ages, and moves objects which are recently not used by the
mutators to the cold storage through an operation called
freeze. Objects in cold storage are neither read nor written
bymutators. Attempts bymutators to accesses objects in cold
storage cause the objects to be reheated and moved back into

hot storage. From a mutator’s perspective, the cold storage
does not exist. Validation of the design against benchmarks
from JGraphT and DaCapo shows that ThinGC freezes a
significant portion of the heap and rare reheating occurs
with marginal overhead for most applications. This reflects
that clear and stable cold-hot classification exists widely, and
each clustering could be properly contained without much
heat leaking.

A Known Limitations
Reheat. Reheating a cold object entails memory alloca-

tion in hot storage, which could fail. Currently, the JVM
will crash with out-of-memory error. Potential mitigation
strategies could be to increase heap size, reduce freezing fre-
quency, or better heuristics for identifying stable hot objects.

Freezing Large Cold Objects. Because large pages do not
participate in relocation, large cold objects are currently
never moved to cold storage. This is not implemented be-
cause we believe reheating large objects could be prohibit-
ively expensive. We leave exploring this for future work.

Non-strong Reference Processing. Reference processing
in ZGC requires complete reachability info, which is obtained
after the M/R phase is done. As CSGC may span multiple
ZGC cycles, we cannot acquire the complete reachability
information any more. Therefore, all non-strong references
and their referents are always marked hot. In other words,
reference processing is performed by ZGC, and only refer-
ences that have been cleared are subject to being frozen.
In order to estimate how much freezing opportunity is

missed due to this limitation, we use instrumentation to
count the number of non-strong references identified during
marking of each GC cycle. We calculate the average, over
all GC cycles, to approximate the memory usage of non-
strong references, and assume each non-strong reference is
48 bytes. For JGraphT benchmarks, non-strong references
occupy ~130KB, while ThinGC freezes memory on the mag-
nitude of megabytes with very few reheats. The results are
similar for DaCapo benchmarks also; e.g., jython has the
largest number of non-strong references, ~250 KB, while
ThinGC freezes ~20 MB.
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