
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2020

Direct Heap Snapshotting in the
Java HotSpot VM:
a Prototype

LUDVIG JANIUK

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Direct Heap Snapshotting in the Java HotSpot

VM: a Prototype

Ludvig Janiuk

2020

Master’s Thesis in Theoretical Computer Science
Supervisor: Philipp Haller
Examiner: Roberto Guanciale
Swedish title:
Direkt Heap-Snapshottande i Java HotSpot’s VM: en Prototyp
School of Electrical Engineering and Computer Science

Abstract

The Java programming language is widely used across the world, powering a
diverse range of technologies. However, the Java Virtual Machine suffers from
long startup time and a large memory footprint. This becomes a problem when
Java is used in short-lived programs such as microservices, in which the long
initialization time might dominate the program runtime and even violate service
level agreements. Checkpoint/Restore (C/R) is a technique which has reduced
startup times for other applications, as well as reduced memory footprint. This
thesis presents a prototype of a variant of C/R on the OpenJDK JVM, which
saves a snapshot of the Java heap at some time during initialization. The
primary goal was to see whether this was possible. The implementation suc-
cessfully skips parts of initialization and the resulting program still seems to
execute correctly under unit tests and test programs. It also reduces runtime
by a minuscule amount under certain conditions. The portion of initialization
being snapshotted would need to be further extended in order to result in larger
time savings, which is a promising avenue for future work.

Sammanfattning

Programmeringsspr̊aket Java används i hela världen, och driver en bred mängd
olika teknologier. Javas Virtuella Maskin lider däremot av en l̊ang uppstart-
stid och ett stort minnesavtryck. Detta blir ett problem när Java används för
kortlivade program liksom microservices, i vilka den l̊anga initialiseringstiden
kan komma att dominera programmets körtid, och till och med bryta avtal om
tjänstens tillgänglighet. Checkpoint/Restore (C/R) är en teknologi som har
minskat uppstartstid samt minnesavtryck för andra applikationer. Detta arbete
presenterar en prototyp där en variant av C/R applicerats p̊a OpenJDK JVM,
och sparar undan en kopia av Java-heapen vid en specifik tidspunkt under ini-
tialiseringen. Det främsta m̊alet har varit att undersöka om detta är möjligt.
Implementationen lyckas med framg̊ang hoppa över delar av initialiseringen och
det resulterande programmet verkar fortfarande exekvera korrekt under enhet-
stester och testprogram. Implementationen minskar ocks̊a uppstartstid med en
väldigt liten br̊akdel under vissa omständigheter. För att spara mera tid skulle
perioden som hoppas över med hjälp av snapshottet behöva vara större, vilket
är en lovande riktning för framtida arbete.

Acknowledgements

The progress I’ve made in this thesis would not have been possible without the
guidance and support of the Oracle JPG Group in Stockholm. I want to thank
each and every one of the outstanding people there for their willingness to share
knowledge, their patience, their passion, and their kindness.

In particular, I want to thank Tobias Wrigstad for guidance in strategy and
writing, and Ioi Lam for his expertise and dedicated time which really boosted
my progress. I’m also thankful to Claes Redestad, David Simms, Erik Österlund,
Robbin Ehn, and all others who took time to explain JVM intricacies to me and
answer all my questions. Finally, I want to thank Philipp Haller for being my
adviser.

i

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Checkpoint/Restore . 3
1.3 The Vision of Heap Snapshotting 3
1.4 Purpose . 3
1.5 Goals . 4
1.6 Contributions . 5
1.7 Ethical Considerations . 6
1.8 Plan of the Document . 6

2 Background and Related Work 7
2.1 Java Primer . 7
2.2 Previous Work . 7

2.2.1 GraalVM’s “Run Once Initialize Fast” with Closed World
Assumption . 8

2.2.2 jaotc . 8
2.2.3 jlink . 8
2.2.4 Nailgun . 9
2.2.5 Oracle’s “Project Leyden” 9

2.3 Checkpoint/Restore . 9
2.4 The JVM in depth . 10

3 Method 11
3.1 Overview of Implementation . 11
3.2 Usage . 13
3.3 Evaluation: Overview of the Tests 15

3.3.1 No performance testing on real-world programs 15
3.3.2 System Properties of the Testing Environment 15
3.3.3 Testing Conditions . 15

3.4 DHS-vs-Stock . 16
3.5 Moments . 17

3.5.1 Pretouch . 17
3.5.2 Methodology Verification 18

3.6 OpenJDK Unit Tests . 18

ii

4 Approach 20
4.1 Anatomy of the Snapshot . 20

4.1.1 The Heap Snapshot . 20
4.1.2 Class and Native Method Metadata 20
4.1.3 Snapshot Metadata . 21

4.2 Heap Dumping: Saving the Snapshot 22
4.2.1 Saving the Heap to File 22
4.2.2 Saving Auxiliary Data Structures 23

4.3 Heap Restoring: Starting from the Snapshot 23
4.3.1 Reading the Snapshot Files 23
4.3.2 Synthetic Initialization . 25

4.4 Common Concerns in Implementation 27
4.5 Simplifications, Trade-offs, and Limitations 27

5 Results 29
5.1 DHS-vs-Stock . 29
5.2 Moments . 31
5.3 Correctness Tests . 31

5.3.1 jtreg Test Results . 31
5.3.2 Evaluation on Test Programs 31

6 Discussion 34
6.1 Correctness Confidence . 34
6.2 Sensitive Memory . 34
6.3 DHS-vs-Stock . 35
6.4 Moments . 35
6.5 Reliability of Runtime Differences 36
6.6 Criticisms . 37

7 Conclusions & Future Work 39
7.1 Roadmap . 39
7.2 Challenges . 40
7.3 Project Leyden . 40
7.4 Research Approaches for Future Work 41

A Build instructions 42
A.1 Building . 42

B The JVM in Depth: A Focus on Internals and Startup 43
B.1 Memory Areas of the Java HotSpot VM 43
B.2 The Role of Classes . 45
B.3 Oops and OopHandles . 46
B.4 Class Loading Roadmap . 46
B.5 Class Data Sharing . 47

iii

C Can Pointers Keep Their Meaning? 48
C.1 Native Function Pointers . 48
C.2 Pointers Within the Heap . 49
C.3 Pointers from Metaspace to Heap 49

C.3.1 Pointers to “Global Singleton Objects” 49
C.3.2 Pointers to “Identifiable Objects” 49
C.3.3 “Unidentifiable Objects” 50

C.4 Pointers from Heap to Metaspace 50
C.5 Other “Pointers” . 50

iv

Chapter 1

Introduction

1.1 Problem Description

The Java programming language is a technology used worldwide in countless
applications, from embedded applications, to desktop programs, to servers. Ac-
cording to one estimate [Pot12], there were over 8 million Java developers in the
world in 2012. Java virtual machines can take a relatively long time to start up
compared to other languages, because of the expensive code verification, class
loading, bytecode interpretation, profiling, and dynamic compilation they have
to perform [Wim+19].

Microservices have become a very popular strategy and changed how server
applications are written and deployed. Serverless architectures are an even
more granular example. When considering long-lived programs such as mono-
lithic web servers, startup time is of little concern and can largely be ignored.
However, in short-lived programs, startup time begins to be a large part of the
program lifetime and can even dominate it as seen in Table 1.1. Given the
popularity of system architectures which rely on short-lived programs, this slow
startup of Java does become a pain point. Microservices or Function-as-a-service
functions written in Java could potentially be costing more in execution time
fees than necessary; moreover, since cold VM startup can be an order of magni-
tude slower [Akk+18], this might lead to breaking service-level agreements. The
first worker to spawn for a microservice will require a cold start of the language
runtime [Wim+19].

This might force developers to choose languages other than Java for deploy-
ments which include the various kinds of short-lived programs. In such cases,
developer time might be wasted re-implementing software packages and libraries
for which there already exist open-source and/or time-tested solutions in Java,
due to its 25-year old history.

1

Hello World version Runtime (ms)

C++ 0.89
Java 33.15

Table 1.1: Runtimes of two Hello World programs, written in
C++ and Java, as measured once. The difference provides some
illustrative inspiration for this work: should not the JVM be
able to execute Hello World quickly?

2

1.2 Checkpoint/Restore

Checkpoint/Restore is a mature technology which has been successfully used
to freeze and restore, and even migrate, whole groups of interconnected pro-
cesses between machines in e.g. high-performance computing settings. A main
example is CRIU, described later in the background.

1.3 The Vision of Heap Snapshotting

Perhaps ideas from Checkpoint/Restore could be used to mitigate Java’s startup
problem? After all, it is conceivable that JVM initialization is relatively de-
terministic: after being initialized, the JVM’s runtime state might look very
similar every time. So, it seems worth attempting to just start the JVM from
such an “initialized state” directly, without actually running the initialization
every time. That is exactly what this thesis attempts to prototype, and the
same strategy has already been realized in the text editor Emacs (section 2.3).

Challenges There are of course multiple challenges to this approach: How
do we know that a restored process is “safe” and stable? How do we go about
implementing this - do we start from a snapshot just before the main function,
and fix errors until it finally works, or do we start by snapshotting a very small
early part, and try to move the snapshot ahead in a more iterative approach?
When errors arise, how do we fix them? Are all state inconsistencies fixable?
Will the fixes take up more time than is saved in the first place?

1.4 Purpose

The purpose of this work is to attempt to reduce JVM startup time. It has been
said somewhere that frequent recompilations of the Linux kernel are responsible
for the cutting down of a million trees. Perhaps a similar thing could be said
about JVM initialization. If the initialization sequence of JVM’s is mostly de-
terministic, then re-running it every time seems like a similar waste of computer
time.

Saving computer power This is a good place to attack, as Java is incredibly
popular, and used all around the world. Large parts of the world run Java, but in
the modern world, the startup problem is exacerbated by e.g. microservices, as
startup becomes not inconsequential, but a large part of total program runtime
for short-running programs. Therefore, reducing this could have impact on the
total amount of computation done in the world.

Having Java start faster Java startup is also an ergonomic factor for all
the Java developers in the world. Faster startup means faster iteration, which
means faster development.

3

Efficient Java usage in short-lived programs As Java is a language with
25 years of history, a rich set of libraries and software packages have been de-
veloped for it. Expertise in these is widespread. It would therefore be a shame
if Java’s startup time were a limiting factor in its adoption for today’s diverse
deployment needs, as opposed to the historic monolithic servers. This problem
is another reason for this research.

Making existing deployments start faster Finally, Java is indeed used
in existing microservice and serverless setups, and if JVM startup time were
reduced, the running cost of all these existing deployments could potentially be
reduced, without any more effort than a version update.

Memory sharing Used live memory is also a limiting factor for infrastructure
providers. As a secondary purpose, it is worth considering whether synergy
effects can lead to reduced usage of memory in server environments with several
JVMs running in parallel, e.g. through copy-on-write.

1.5 Goals

The goal of this work is to investigate to what extent the ideas of Checkpoint/Re-
store can be applied to reduce JVM startup time, by developing a prototype
focused on snapshotting the Java Heap. This prototype is in essence a source
code patch to the JVM. A goal is also to facilitate future work on this problem.

Heap Snapshotting, not full Checkpoint/Restore While C/R is often
used in multi-process environments (e.g. supercomputers), this work focuses
on the startup of a single JVM process, on a single machine. It is not a goal
to implement full C/R, i.e. the possibility to serialize program (or system-of-
programs) state at arbitrary points during execution. We call the version of
Heap Snapshotting presented in this thesis “Direct Heap Snapshotting” (DHS),
and define it as: 1) Taking a snapshot of the Java Heap at a specific point during
initialization; 2) On future runs, overwriting the Java heap in-place with the
snapshot, and 3) Repairing the runtime state in any necessary way to enable
starting execution from that point.

Implementation strategy As time is very limited, the goal is to produce a
prototype testing the core idea of DHS, ignoring or deferring periphery issues
as much as possible. The goal is not to create a production-ready patch that
could easily be integrated into current workflows. Neither is it a goal to reach
a point of actually saving time, meaning that not too much time is to be put
on optimization. Several different approaches might be tested to find one that
works well.

4

Definition of success A good Heap Snapshotting (HS) solution will be one
that:

• Allows us to skip the execution of as many bytecodes as possible.

• Still achieves everything that those bytecodes achieved; heap state is
equivalent to that after being “normally” initialized, and all if any side
effects of initialization still happen.

• Does not impact future program execution in any negative way.

• Is able to perform restoration as quickly as possible, and crucially, the
time to restore the heap must be a lot less than the time saved by not
running the bytecodes.

Ideally a program running on the JVM should not be able to distinguish whether
it has been initialized normally or merely heap-restored, but for looking at time
passed. This is however a metric of success rather than a goal in itself.

We do not aim to achieve all parts of a “good” heap snapshot in this thesis,
instead we leave a lot of it as future work.

Investigating implementation difficulty Another goal is to gauge the im-
plementation difficulty of a “good” HS. It is after all possible that the JVM is
so complex that trying to overwrite the whole heap with an earlier version and
fix all the problems, is a futile attempt. So, we are interested in how much effort
is required to produce a stable solution, which hopefully is also faster. At what
point is trying to implement more Heap Snapshotting not worth the benefits,
compared to other JVM startup optimizations?

1.6 Contributions

This thesis presents the following contributions:

• An implementation of Direct Heap Snapshotting in the JVM. The imple-
mentation takes a snapshot of the JVM heap and uses it to start without
performing parts of the initialization. It overwrites the heap directly when
restoring, and makes no restrictions on what java programs can be run
with it (e.g. does not make the closed-world assumption as in [Wim+19]).

• Measurements of the implementation’s performance, as compared to an
unmodified JVM, focused on startup performance.

• Analysis of the implementation’s stability and reliability through unit tests
and executed programs.

• Discussion of the empirical results, and how they might be affected as
future work progresses.

5

• The implementation should serve as a springboard for future work. It
contains a lot of groundwork that is thought to enable more rapid devel-
opment in the next stages.

1.7 Ethical Considerations

Higher time-efficiency and power-efficiency of Java has a lowering impact on
cost, as well as on usage of resources. However, rebound effects might manifest
in people deploying more services, thus negating the saved resources. One could
consider whether improving developer ergonomics and efficiency is a net good
for society. In a job market with high unemployment, people are looking to
the software sector for jobs, and making developer work more efficient might
reduce the demand of software developers, thus potentially compounding unem-
ployment. But this would be an anti-innovation way of thinking - the solution
to unemployment ought not be deliberate inefficiency. It is the opinion of the
author that any ethical considerations of this research are negligible.

1.8 Plan of the Document

Chapter 2 introduces the basic knowledge that is required to serve as context
for the rest of the work. Chapter 3 explains how to replicate the results of this
thesis by first going over the build process of the source code patch that has been
developed, then going over the broad strokes of how the code works, and finally
detailing the setup of the tests performed in the evaluation process. Chapter 4
explains how the code works in more detail, also detailing design decisions and
trade-offs. Chapter 5 summarizes the most important results both from the
development work and from the evaluations. Finally, chapter 6 provides an
analysis of the results and some interpretations, and chapter 7 gives conclusions
and outlines the road ahead for future development of this research. The ap-
pendices contain some useful summaries of advanced but related JVM topics,
as well as a broader speculation on the feasibility of larger heap snapshotting.

6

Chapter 2

Background and Related
Work

2.1 Java Primer

Quoting Oracle’s own description [Ora]:

The JavaTM Programming Language is a general-purpose, concur-
rent, strongly typed, class-based object-oriented language. It is nor-
mally compiled to the bytecode instruction set and binary format
defined in the Java Virtual Machine Specification.

In the scope of this thesis, what’s important are not details of the Java language
itself, but instead how it is executed, i.e. the Java Virtual Machine. The JVM
knows nothing about Java, but instead executes bytecodes contained in .class

files. This is what allows Java to be platform-agnostic; as soon as a JVM has
been implemented for a particular platform, classfiles can be executed on it.
Usage of the Java language is not even necessary, any language that can be
compiled to bytecodes can be hosted on the JVM [Lin+20a].

There are many JVM vendors: organizations or companies which develop
and maintain their own implementations of the JVM. As long as a JVM imple-
mentation is conforming to the JVM specification, it should be able to execute
any given classfiles. HotSpot [gro] is the reference JVM implementation pro-
vided by Oracle, but for example there exists also GraalVM [Gra] and RedHat
OpenJDK [Red].

2.2 Previous Work

Before investigating the problem of improving Java startup, it is useful to con-
sider what approaches have already been tested.

7

2.2.1 GraalVM’s “Run Once Initialize Fast” with Closed
World Assumption

The team behind GraalVM achieves two orders of magnitude faster Java startup
compared to the HostSpot JVM, under certain restrictions which are argued to
be suited for deployments such as microservices [Wim+19]. They use the ideas
of Checkpoint/Restore in running initialization once, saving the heap status af-
ter initialization, and then being able to restore a program to start from that
heap. While this is also a variant of snapshotting the heap, they load their
snapshot into a dedicated “image heap” memory area, whereas Heap Snapshot-
ting as described in this thesis happens in-place, overwriting the memory area
of the Java Heap directly. They also utilize “a novel iterative application of
points-to analysis” and ahead-of-time compilation. A notable limitation is that
the GraalVM approach sacrifices the ability of the JVM runtime to load arbi-
trary classes with arbitrary class loaders, that is, they adopt the closed-world
assumption. In contrast, the prototype of Heap Snapshotting presented in this
thesis does not impose such a restriction: once the JVM is restored from the
snapshot, it functions just as it if had been initialized normally. As compared
to existing Checkpoint/Restore systems, they state:

We believe that our approach is more suitable for microservices than
checkpoint/restore systems, e.g., CRIU, that restore a Java VM
such as the Java HotSpot VM: Restoring the Java HotSpot VM
from a checkpoint does not reduce the memory footprint that is sys-
temic due to the dynamic class loading and dynamic optimization
approach, i.e., the memory that the Java HotSpot VM needs for
class metadata, Java bytecode, and dynamically compiled code. In
addition, it cannot rely on a points-to analysis to prune unnecessary
parts of the application.

Their paper contains some tools that can be useful for research into heap restora-
tion topics, such as a script for access tracing at runtime.

2.2.2 jaotc

The Java Ahead-Of-Time Compiler [Koz] is a tool introduced to allow classes to
be compiled to native code ahead of program execution. This improves startup
time as less time needs to be spent compiling and optimizing code. These gains
are orthogonal with the goals of this thesis.

2.2.3 jlink

jlink is a Java tool that allows creating a custom JRE image for a specific
application, optimizing away in advance modules that are not used. It also
allows many other miscellaneous link-time optimizations [Ora17b][Red17].

8

2.2.4 Nailgun

Nailgun is a script that allows a JVM to be started once, ahead of time, and then
when a program needs to be executed, that existing VM is adapted to execute
the program, instead of starting a new one. It was originally meant to quickly
execute command line programs on the JVM [Lam]. This clever idea is in line
with the goals of this thesis as far as latency is concerned, since it allows one to
start a program without waiting for JVM initialization. Sadly, the requirement
of having a JVM constantly running is equivalent to having workers that are
never killed. This is wasteful of memory resources on rarely-accessed services,
which is the reason why cold starts are indeed tolerated in general. Nailgun is
also not secure in its current implementation, because command information is
transferred between processes with little to no protection. The project seems to
now be maintained by Facebook [Fac].

2.2.5 Oracle’s “Project Leyden”

Announced on April 27 2020 by Mark Reinhold, Project Leyden [Rei20] can be
seen as a serious investment in alleviating the problem of slow Java startup. The
project is currently in a very early stage, but the plan seems to be to add support
for “static images” to Java - compiled executables which run just one Java
program without the possibility of extension with custom class loaders. That
is, this project aims to use the closed world assumption, just like GraalVM’s
solution.

2.3 Checkpoint/Restore

Checkpoint/Restore (C/R) is the idea of saving process state so that it can
be reconstructed in the future [BW01]. It is used for load balancing and fault
tolerance among machines, e.g. in high-performance computing or the CMS
experiment of the Large Hadron Collider at CERN, but also for regular desktop
computers, or container migration. Some technologies which implement C/R
are DMTCP and CRIU [AAC07][Pic+16]. While these projects focus on check-
pointing of whole processes or even groups of interdependent processes, the idea
has also seen other uses. As one example, the build process of text editor Emacs
involves running initialization lisp scripts. Instead of running these every time
at startup, Emacs runs these as part of the build step, and then saves a snap-
shot of the program state which is loaded directly at startup in subsequent runs
[Fre19].

A central challenge of any Checkpoint/Restore scheme is to save all necessary
state, and handle all the necessary environment connections, so that a process
can be continued at a later time. This is especially visible in DMTCP ([AAC07]
page 1, introduction):

DMTCP automatically accounts for fork, exec, ssh, mutexes/semaphores,
TCP/IP sockets, UNIX domain sockets, pipes, ptys (pseudo-terminals),

9

terminal modes, ownership of controlling terminals, signal handlers,
open file descriptors, shared open file descriptors, I/O (including the
readline library), shared memory (via mmap), parent-child process
relationships, pid virtualization, and other operating system arti-
facts.

Of course, all of these “operating system artifacts” are necessary for proper
process functioning, and it is conceivable that if any of them is not treated, or
restored improperly, then errors could manifest, perhaps in subtle ways.

2.4 The JVM in depth

Appendix B is an extension to this background which introduces, summarizes
and defines many basic as well as advanced concepts intrinsic to JVM program-
ming. If one is unfamiliar with the codebase and wants to follow along successive
chapters on a details level, especially chapter 4, one is encouraged to read it.
However, for the reader that is more interested in the big picture and research
results, it is skipped from here because of its length.

10

Chapter 3

Method

In this chapter, I first give an overview over how the prototype developed per-
forms Heap Snapshotting, then I give replication instructions by explaining the
build process, usage, and finally evaluation strategies.

3.1 Overview of Implementation

The prototype that has been developed successfully snapshots the whole Java
Heap at a certain point in initialization, and initializes from it on subsequent
runs by using it to overwrite the Java Heap directly. The snapshot which is saved
contains the heap and auxiliary data, and is saved to disk as three separate
files. The role of each file as well as their detailed contents are described in
Section 4.1. Heap Dumping is the process of writing the snapshot to disk, and
involves concerns such as finding the right areas in memory, and traversing the
class graph. It is described in detail in Section 4.2. Heap restoration is the
process of loading and preparing the heap snapshot, and launching a program
on it. This includes what we will sometimes refer to as “fixup procedures”, and
is described in Section 4.3.

The source code patch that has been developed consists of changes to 19
files in the OpenJDK HotSpot JVM source code, plus the addition of one file,
totalling roughly 1500 lines of code added or changed. The largest changes have
been in the following files:

src/hotspot/share/runtime/thread.cpp

src/hotspot/share/oops/klass.cpp

with some files only containing changes necessary to satisfy C++’ rules on
privacy. The code is written in such a way as to only perform extra functionality
when enabled, so with default options, the modified JVM still behaves like the
regular version. The basic structure of the code is captured by the pseudocode
in Figure 3.1:

11

i n i t i a l i z e j a v a l a n g c l a s s e s () {
// . . .

i f (/∗ Restor ing the heap ∗/) {
restore heap dump () ;

} else {
// Do a l l i n i t i a l i z a t i o n as normal

i n i t i a l i z e c l a s s (vmSymbols : : j a v a l a n g S t r i n g ()) ;
i n i t i a l i z e c l a s s (vmSymbols : : j ava lang System ()) ;
// . . . Normal i n i t i a l i z a t i o n which t a k e s time

i f (/∗ Dumping the heap ∗/) {
save heap dump () ;
e x i t (0) ;

}
}

// Proceed wi th r e s t o f i n i t i a l i z a t i o n .
// Not covered by snapshot y e t .

}

Figure 3.1: The main structure of the code changes in the DHS
patch.

12

run heap dumping, do not print timestamps

jdk/build/linux-x64/images/jdk/bin/java

-XX:+UnlockExperimentalVMOptions

-XX:+UseEpsilonGC

-Xmx1024M

-Xms1024M

-XX:EpsilonMaxTLABSize=8M

-XX:MinTLABSize=8M

-XX:HeapSnapshottingMode=4

-version

run minesweeper on restored heap, print timestamps

jdk/build/linux-x64/images/jdk/bin/java

-XX:+UnlockExperimentalVMOptions

-XX:+UseEpsilonGC

-Xmx1024M

-Xms1024M

-XX:EpsilonMaxTLABSize=8M

-XX:MinTLABSize=8M

-XX:+JaniukTimeEvents

-XX:HeapSnapshottingMode=3

-jar minesweeper.jar

Figure 3.2: Examples of full run commands. Newlines added
for readability.

3.2 Usage

Having built the modified JVM (refer to instructions in Appendix A), using DHS
is a two-step processes controlled by the HeapSnapshottingMode option. First,
the snapshot must be generated, and this is done by setting HeapSnapshottingMode

to the code 4. Running this with the program you intend to run1 will generate
the snapshot and exit. Run with HeapSnapshottingMode set to the code 3 to
start from the last generated snapshot.2

Both run modes also require a common set of command line options. Omit-
ting any of them has a high chance of resulting in a crash. They are summarized
in Figure 3.3 and full examples of run commands are given in Figure 3.2.

1Strictly speaking, any program will work, e.g. -version. Since the snapshot is very early
in JVM initialization, snapshots should be program-agnostic.

2Codes 1 and 2 are reserved for expansion work. Code 0 is the default and results in a
normal run, therefore, without this option the modified JVM behaves like a normal JVM.

13

UnlockExperimentalVMOptions Necessary to use e.g. Epsilon GC.

UseEpsilonGC Enable Epsilon GC.

-xms1024m -xmx1024m These set the heap size at 1 gigabyte, which is
larger than normal. Used to facilitate running under Epsilon. I actually
only needed a “minimum” heap size but without the other, the JVM outputs
annoying warnings.

EpsilonMaxTLABSize=8m, MinTLABSize=8m Increase the size of TLABs
to 8 megabyte so I can fit all of the used Heap into one TLAB during start,
avoiding having to handle multiple TLABs when restoring. This might
need to be increased further in the future, unless multiple TLAB support is
implemented.

-xShare:on Forces CDS to be enabled. It’s usually on by default, but CDS
is relly necessary. There is also a check in the code patch that makes sure it’s on.

-xx:HeapSnapshottingMode=3 Essential. Controls the run mode. This
makes it load the heap from snapshot during initialization.

-xx:-JaniukTimeEvents Suppress some timing debug output, See “tim-
ing tests”.

-xx:janiukprintstats=0 Suppress miscellaneous debugging output.

Figure 3.3: Explanations of common command line options
needed for Heap Snapshotting.

14

3.3 Evaluation: Overview of the Tests

Evaluation has been performed in part focused on performance and in part on
correctness and robustness. Correctness of the restored process was measured
by running the parts of the JVM test suite that are relevant for the changed
code. Being restored from a snapshot should not introduce any failing test
cases. Apart from unit testing, confidence in correctness is also strengthened by
running various real-world Java programs in the restored JVM. Any program
which can run on an unmodified JVM should run without any errors on the
modified version with heap restoration.

The DHS-vs-Stock test compares the total runtime of the DHS patch with
an unmodified JVM by running a short-lived program under both in an inter-
leaving fashion. In the “Moments” test, a breakdown of the impact of different
operations during heap restoration is measured, by printing timestamps between
the different operations. The goal is to find out which restoration operations
are the most expensive. Something that has not been analyzed from a time
perspective is time cost of dumping the heap. This is presumed to not be a
relevant concern.

3.3.1 No performance testing on real-world programs

All the performance tests have been done only on java --version, and perfor-
mance impact has not been measured in any way on real-world programs such
as web servers, games, et.c. The reason for this is that the changes made only
impact a very early part of JVM initialization, which happens long before even
the first bytecode of a given program is executed. Therefore, the performance
impact does not depend on the application being run. It is desirable to run with
an application that is as short-lived as possible, since a longer execution time
would only contribute noise to the measurements.

3.3.2 System Properties of the Testing Environment

The tests were done on an ASUS laptop computer running Ubuntu 18.04, Linux
kernel version 4.15.0-101-generic. The processor is a Intel(R) Core(TM) i7-
6700HQ CPU @ 2.60GHz with an L2 cache of 6144 KB. The stock version of
Java compared against is Java 15.

3.3.3 Testing Conditions

When testing runtime at scales of 10’s of milliseconds, it is difficult to avoid
noise, and so efforts made to avoid it are important. Both the Moments test
and the DHS-vs-Stock test were made under the following conditions. All other
applications as well as background applications were turned off. Network was
turned off to avoid spontaneous work. Bluetooth was turned off as well. Prior
to starting tests, the system monitor was used to ensure that the processor was
not busy performing any other work.

15

3.4 DHS-vs-Stock

This test is made with the purpose of investigating what impact DHS has on
startup time, on the program java -version which just prints the version of the
JVM and exits. The test is set up to compensate for variations in runtime, such
as changes in system performance due to e.g. temperature and other variations.
Two separate JVMs are compiled, one patched with the implementation of
Direct Heap Snapshotting and one completely without. These are called “DHS”
and “Stock”. First, the Class Data Sharing (CDS) archives are initialized and
DHS is run in heap dumping mode, so that a snapshot is established. Then both
versions are run once each for the sake of warmup; these runs are not included in
measurements. The Unix perf stat tool is then used to run the programs for
400 repetitions each, and to collect measurements including executed machine
instructions and time elapsed. A bash script runs these two JVMs under perf

10 times in an interleaved fashion, that is: A, B, A, B, A, B, ... In the end,
therefore, the sequence of executions is equivalent to running:

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

perf stat -r 400 [stock-jvm] [options]

perf stat -r 400 [dhs-jvm] [options] -XX:HeapSnapshottingMode=3

Where [options] is

-XX:+UnlockExperimentalVMOptions

-XX:+UseEpsilonGC

-Xmx1024M

-XX:EpsilonMaxTLABSize=8M

-Xms1024M

-XX:MinTLABSize=8M

-Xint

16

-XX:-UsePerfData

-version

[stock-jvm] is jvm-stock/images/jdk/bin/java, and
[dhs-jvm] is jvm-dhs-version/images/jdk/bin/java.

3.5 Moments

To measure what was taking the most part in restoration, the restoration proce-
dure was segregated into reasonable and distinct periods at the level of the source
code. At the start of and in-between each period, the function print_time was
called, which prints a timestamp in nanoseconds to standard output together
with an identifying mnemonic “tag” for this moment in time. This output is
enabled with the -XX:+JaniukTimeEvents command line parameter. The DHS
JVM version in restoration mode was run 400 times in succession under perf

stat, interleaved with the same JVM build but with restoration turned off.
The interleaving was done in the same way as in the DHS-vs-Stock test, 10
times. Finally, through programmatic analysis, differences between the out-
putted timestamps in each run were computed and averages collected. This
gives an idea of how the total runtime of the restore operation is distributed
between the individual parts of it.

3.5.1 Pretouch

One worry with this test, was that DHS contributes to a long runtime in other
ways than simply how long it takes to run the fix-up procedures. One possibility
imagined was that memory pages that are normally read into memory during
normal startup, are left untouched until they would have to be paged in later
in program initialization. This would make it hard to measure the total impact
of DHS.

For this reason, Pretouching was implemented as a way to “collect” all run-
time impacts during restoration time. In a “quick-and-dirty” implementation,
pages are assumed to be over 2000 bytes, and a for loop iterates the heap, reads
one value every 2000 bytes, and uses these to compute a checksum which is
printed on standard output (only to avoid these reads being optimized away).
This way all pages in the heap are ensured to be paged-in.

Why it was dropped However, this procedure was measured to take insignif-
icant time and abandoned. We suspect this is due to the heap file being kept
in memory by the OS anyways, due to the rapidly-iterated nature of the test.
As it did not seem to change anything, Pretouching was not included in any of
the tests that have been conducted. However, if future work on cold starts is
conducted (where the OS file cache is made sure to be emptied, for example),
then this technique might prove useful, so the code is left in the artifact.

17

make

conf=x64-debug

test=test/hotspot/jtreg/runtime

jtreg="java_options=

-xx:+unlockexperimentalvmoptions

-xx:+useepsilongc

-xmx1024m

-xms1024m

-xx:epsilonmaxtlabsize=8m

-xx:mintlabsize=8m

-xshare:on

-xx:newcodeparameter=3

-xx:-janiuktimeevents

-xx:janiukprintstats=0"

jtreg="test_mode=othervm"

test

Figure 3.4: The command used to run OpenJDK tests relevant
to DHS.

3.5.2 Methodology Verification

It is important to be clear on how precise the measurements of time differences
actually are. To this end, some code was written to verify the methodology
of computing differences. The code attempts to measure “nothing”, “a small
amount of work”, and the same amount of work but repeated a few times.
This should give an idea of the precision in the measurements, and whether the
times scale linearly as expected 3. “nothing” was measured to take around 2000
nanoseconds, and the scaling was confirmed. The figure of 2000 nanoseconds
gave some perspective to other parts of running code, and contributed to the
conclusion that Pretouch was essentially doing nothing.

3.6 OpenJDK Unit Tests

The OpenJDK distribution comes with a substantial amount of tests. For ex-
ample, a test might be a Java program that is supposed to produce a certain
output. All these tests are automated and configurable, and can be run with one
command. They are run with the make system. The command that was used
to run the tests is shown in Figure 3.4, and the individual options are explained
in Figure 3.5. jtreg allows us to pass special options through its java options

command. jtreg is the Java unit test runner.

3See https://github.com/LudwikJaniuk/direct-heap-snapshotting/blob/master/

ludvig-diff-05-14.txt#L968-L987

18

https://github.com/LudwikJaniuk/direct-heap-snapshotting/blob/master/ludvig-diff-05-14.txt#L968-L987
https://github.com/LudwikJaniuk/direct-heap-snapshotting/blob/master/ludvig-diff-05-14.txt#L968-L987

conf means which configuration to test out of the different build types. In this
case, the debug one.

test specifies if to run only a subset of the tests. Since even that can
take a lot of time, it’s useful. As stated, the tests in runtime are the only ones
relevant to the DHS patch (according to Oracle engineers).

jtreg="java options=..." This passes the Java options necessary for
running Heap Snapshotting to the JVM under testing. See Figure 3.3 for an
explanation of these.

jtreg="test mode=othervm" That means that the options will be passed to
the VM running the tests, not the VM running jtreg framework

Figure 3.5: The command line options used in running the tests

19

Chapter 4

Approach

This chapter explains the implementation in more detail, expanding on imple-
mentation choices and trade-offs that were made, as well as explaining how the
code does what it does. For more details on certain advanced Java topics such
as e.g. Metaspace, consult appendix B or online documentation.

4.1 Anatomy of the Snapshot

It seems important to give an overview of the constituents of the snapshot
that is saved during heap dumping, and restored in heap restoration. The
snapshot consists of three files: the Heap Snapshot file itself, a file with metadata
about snapshotted classes and native methods, and a file with metadata about
the snapshot. Only some early Java classes are snapshotted at this stage, the
snapshot does not contain information that depends on the program being run.

4.1.1 The Heap Snapshot

The heap snapshot is just a binary file that is an exact copy of the Java Heap
as it was at snapshotting time. This is thanks to the heap being contiguous in
this implementation. If we could not rely on the heap being continuous, this file
would probably be more complicated, but it would nevertheless have to contain
the information from the heap, to facilitate restoring it.

4.1.2 Class and Native Method Metadata

This file contains a table of class metadata objects, and a table of Native Method
metadata objects.

Class Metadata Table

This is a table of every class that was loaded at snapshot time. Each entry
contains:

20

• The InstanceKlass/ArrayKlass pointer of the Klass. This is a pointer
into metadata that is presumed to be consistent between runs.

• A pointer to the class mirror inside the snapshotted heap

• Their initialization state, as is was at the point of snapshotting.

Native Method Table

The table of Native Method entries contains one entry for each native method
in the classes that were loaded at snapshot time. Each entry contains:

• An InstanceKlass pointer to the class that owns this method. This is a
pointer into Metaspace, and is assumed to be stable between runs.

• The Method pointer. This is a pointer into Metaspace, and is assumed to
be stable between runs.

• A char array describing the memory area this native method was residing
in.

• An offset into that memory area, denoting at which point within it the
native method was. This and the above are used to find and restore the
native method again.

4.1.3 Snapshot Metadata

The snapshot metadata file helps the loading code in loading the snapshot. It
contains:

• The start location of the heap

• The length of the heap, as of snapshotting time

• Some oop pointers to global heap objects

Global Oop Pointers to Important Objects

These are pointers to the:

• System Thread Group

• Main Thread Group

• Thread Object

These need to be saved, because they are global important objects residing in
the heap, and global pointers to them from outside the heap will have to point
to the right place.

21

4.2 Heap Dumping: Saving the Snapshot

By Heap Dumping, we mean initializing a JVM or a whole Java program, and
saving a copy of the Java Heap in persistent storage together with any auxiliary
data that will be necessary for Heap Restoring. The data that is saved is called
the Heap Snapshot. The point at which Heap Dumping occurs is called the
Heap Snapshotting point. That point is supposed to be somewhere during
program initialization, before the “actual” work of the program happens. The
prototype that has been developed puts this point very early in the initialization
process1. The computation that has happened before the Heap Snapshotting
Point should in principle have been as deterministic as possible, so that any
given execution would be able to proceed after it. After Heap Dumping, the
program is customarily terminated.

Heap Dumping is similar to the “Checkpoint” part of Checkpoint/Restore,
applied specifically to Java, and targeting the Java Heap instead of the whole
program state as e.g. CRIU does.

This section is in large parts a commentary on the source code of the patch.
For full understanding, it it useful to have to source code handy.

4.2.1 Saving the Heap to File

This process is simple in theory, but heap implementations can be much more
complex than textbook examples.

A Straight Write

Epsilon GC is used because it implements the Heap as one contiguous chunk
of memory. This “feature” is in no way necessary for Heap Snapshotting, but
it reduces the time that had to be spent implementing the logic of dumping
the heap. With this “straight write” being possible, we need only to find the
start and length of the virtual memory area that is the heap, and write that
to a file. However, such a naive saving procedure is probably very fragile. If
the memory layout, architecture, endianness and so on of the target OS was
different from the one that performed the dumping, then there would probably
be lots of crashes. Still, this is just enough for laboratory condition testing.

Epsilon This means that we literally don’t have a garbage collector, so long-
running programs which allocate and deallocate even moderate amounts of
memory won’t survive for long under the current implementation. The only
thing one can do is to increase the heap size available. This is not seen as a big
issue.

1In order to understand the current specific temporal location of the snapshotting point,
it would be most straightforward to look at the source code. We can say that it is after some
native classes have been loaded, and after some static Java initialization methods have been
run. It is before thread multiplicity has been introduced, and far before any classes of the
specific program have been loaded, let alone any bytecodes of e.g. the main function having
been executed.

22

4.2.2 Saving Auxiliary Data Structures

Apart from saving the heap itself, the heap dumping code needs to save addi-
tional data to be able to restore the snapshot later. These are the
JaniukMetadataAboutClasses structure, called classesmeta as a global vari-
able, and the JaniukDumpData structure, called dump_data. These are both
filled in before being written to file in save_heap_dump. dump_data contains
the heap start pointer, heap length, and three global heap objects
system_thread_group, main_thread_group, and thread_object, which must
be findable upon restore.

The data structure classesmeta is more complex. It contains a JaniukTable
array, an array of NativeMethodEntrys, and a check value that has only been
used to debug the file saving process, but could theoretically be used as e.g.
a version value. Each JaniukTable contains information necessary to restore
one class. To collect this information, ClassLoaderDataGraph is used to ex-
ecute a closure on all loaded classes. This closure, JaniukKlassClosure, re-
ceives a Klass pointer, determines if the class should be saved, and writes its
InstanceKlass/ArrayKlass pointer to an entry in classesmeta.table, as well
as its mirror pointer and initialisation state. The same closure is used to iterate
the methods of the Klass, and fill in the array of NativeMethodEntrys. The
methods of interest are the ones that are native methods. The exact data about
them and motivations are described elsewhere in section 4.3.2.

Whenever arrays are used in the snapshot, a relatively simple and low-level
mechanism of fixed size arrays with sentinel values is used. This was the simplest
to implement.

4.3 Heap Restoring: Starting from the Snap-
shot

We will now describe the practicalities of the Heap Restore procedure, that is,
what happens when we start from a snapshot, instead of initializing normally.

This section is in large parts a commentary on the source code. For full
understanding, it it useful to have to source code handy.

4.3.1 Reading the Snapshot Files

As described in section 4.1, the snapshot consists of three files, and all three
need to be loaded before the restoring can take place. First, metadata about the
snapshot is read. Next the heap snapshot file is memory-mapped over existing
heap memory. This replaces any information already there. For this to work,
some criteria must be met: the heap snapshot ought to be larger than the current
heap, but not larger than the current TLAB. It is larger because it includes
more initialisation, and in this way, nothing of the old heap is left. Support for
several TLABs is not implemented at this point. A “straight read” with mmap
is possible thanks to the heap being contiguous. In principle, read could be used

23

JaniukMetadataAboutClasses c l a s s e smeta ;

class JaniukKlassClosure {
// Ca l l ed on each c l a s s by l o a d e d c l a s s e s d o ()
void d o k l a s s (Klass ∗ k) {

JaniukTable& next ent ry = c la s s e smeta . t a b l e [n e x t s l o t] ;
In s tanceKlas s ∗ i k = r e i n t e r p r e t c a s t <In s tanceKlas s ∗>(k) ;
next ent ry . i k = ik ;
next ent ry . mirror = ik−>j ava mi r ro r () ;
next ent ry . i n i t s t a t e = ik−> i n i t s t a t e ;
// . . .

// Saves data on n a t i v e methods
ik−>methods do (s a v e m e t h o d i f n a t i v e) ;
}
} ;

void save heap dump () {
// I t e r a t e c l a s s e s , save java mirors and p o s s i b l y o the r c l a s s metadata
JaniukKlassClosure c o l l e c t c l a s s e s ;
ClassLoaderDataGraph : : l o a d e d c l a s s e s d o (& c o l l e c t c l a s s e s) ;
os : : wr i t e (t a b l e f i l e , &c lassesmeta , s i z e o f (c l a s s e smeta)) ;

// Dump the heap
char∗ hea p s t a r t = h e a p s t a r t l o c a t i o n () ;
unsigned int heap len = heap length () ;
os : : wr i t e (h e a p f i l e , heap s tar t , heap len) ;

// Write data about the heap dump
dump data . dump time heap start = heap s ta r t ;
dump data . l e n g t h i n b y t e s = heap len ;
dump data . system thread group = Universe : : system thread group () ;
// . . .
os : : wr i t e (dump data f i l e , &dump data , s i z e o f (dump data)) ;

e x i t (0) ;
}

Figure 4.1: The main operations involved in Heap Dumping.
This listing is severely edited for clarity, at the expense of cor-
rectness and faithfulness to the actual source code.

24

instead of mmap, but as we don’t need to access the contents of the snapshot
themselves at the point of restoring, mmap seems more appropriate. Note that
the fixed flag for mmap is very much necessary. The heap must be mapped into
an exact location in virtual memory, and the operating system needs to support
this. For example, the Microsoft Windows function CreateFileMapping seems
to lack this feature [Micb][Mica].

After the heap is mapped in, we also read the class metadata table, which
will support the synthetic initialization process.

4.3.2 Synthetic Initialization

This is the process of fixing the state of the JVM process up so that initialization
can be continued with the mapped-up heap in place. It can be thought of
as “waking up the transplanted brain”. The main operations that need to be
performed are initializing individual classes and fixing native method pointers,
but there are other smaller steps as well.

Restoring Classes

When we restore the heap, we overwrite all class instances. Most class in-
stances don’t have any pointers to metadata or anything outside the heap, but
unfortunately class mirrors are regular heap objects too, and that adds to the
complexity. Each mirror has a pointer to the Klass instance it’s mirroring, and
of course those pointers might be “outdated” when overwriting. In the same
way, each Klass instance has a pointer into the heap of its mirror. When we
overwrite the heap, those pointers will be pointing to the wrong locations. The
pointers from mirrors to Klass instances are not a problem as CDS makes them
stable (we currently only restore shared classes, but this would be a problem
to be solved in the future). The mirror pointers however must be restored. We
call this “restoring mirrors.”

Why do we need to restore Klass mirrors? One of the things that is
skipped from the original code is initialize_class calls. Such a call creates
the mirror of a Klass, among other things. The InstanceKlass instances on
the other hand do exist already, before our snapshot part starts. When we
restore we will put the mirrors back in memory. But the InstanceKlasses
mirror pointers are null at this point. Therefore, we need to update them on
where their (already existing) mirrors are in the mapped-in heap.

Restoring mirrors We iterate all the classes in the class table of the snap-
shot, and restore those that were fully initialized at the time of the dumping.
Those make up the state of the snapshotted JVM, and so are expected to func-
tion properly. As such, the mirror fields of their InstanceKlass or ArrayKlass
instances (both types are supported) must point to their actual mirrors in the
Heap. We read the position of those mirrors in the class table too. However,
we do not set the mirrors immediately during iteration.

25

Instead, we do something different. We check if the class_loader_data field
is null, and if so, we call load_shared_boot_class and define_instance_class

which is Java machinery, to perform a small but necessary part of the ini-
tialization of the class. This seems to pertain to initializing the state of the
InstanceKlass or ArrayKlass in Metaspace, as well as registering the Klass

with global data structures such as the SystemDictionary. The important part
of define_instance_class, found through careful analysis of code and crashes,
seems to be that it calls add_to_hierarchy; at the very least it seems to register
the class with the SystemDictionary.

To get back to the mirrors, instead of setting them directly, this mechanism
is hijacked, and the function Klass::restore_unshareable_info is modified
to set the mirrors. The reason for this is that it might be called on more
than just the current class, an all of these must have their mirrors set properly.
So, we don’t set the mirrors only on the classes for which class_loader_data

is missing, but for all that are relevant for the initialization of these. The
is_restoring_heap_archive switch is used to trigger that code change.
restore_unshareable_info must search for every class it needs to reset in the
class table, so the variable current_table_entry is used so that at least we
can skip the searches in the cases that there is no recursion. A cache hit, if you
will.

For convenience, here is the call hierarchy for
Klass::restore_unshareable_info:
Klass::restore_unshareable_info is called by
Instanceklass::restore_unshareable_info is called by
Systemdictionary::load_shared_class is called by
Systemdictionary::load_shared_boot_class, called by the DHS patch in
Threads::restore_classes.

The quick_init function Finally, the quick_init function is called for each
class. This function used to be quite large and try to replicate almost everything
that was included in normal Java class initialization, but has been able to be
cooked down to only two things. First, linking the class, because we have not
yet figured out how to synthesize the linkage (this would be an excellend target
for future work). Second, setting init_state to fully_initialized [Lin+20b]
which is a marker that large parts of the existing code rely on.

Restoring Native Method Pointers

An important technique in restoring the current snapshot is restoring native
method pointers. During JVM initialization, all native methods that are used
are registered with the function Method::register_native. Then, the Method

instance that represents that method in Java knows that it is actually a native
method, and holds a pointer to the actual native library, which has been mapped
in.

Due to address space randomization, these pointers will not be the same
between different runs, so the pointers to the methods, which lay on the Heap,

26

are invalid and need to be changed. While one could re-run the specific code of
the class which registers the method, this is not a general solution and needs
to be manually implemented for every class. Instead, a general solution is
implemented. During restoration, and after having parsed the virtual memory
areas, all methods are traversed and the native methods identified. Then, their
new addresses are computed using the native method table, and the parsed
virtual memory areas are used to find a match. This does rely on the same
libraries being loaded from the exact same paths. Also, it needs to compare
string names of all areas. An improvement which might make this faster is to
change to some kind of hash fingerprint routine. There is also the risk for name
collisions.

4.4 Common Concerns in Implementation

Locating the Heap The implementation relies on the method
compressedoops::_heap_address_range.start() to obtain the starting loca-
tion of the heap. This has the side effect of adding a dependency on Compresse-
dOops. This is only done because there is an easy interface here to find the
start of the heap; in fact, the CompressedOops feature should not be necessary
at all for Heap Snapshotting. If another way of finding the start of the Heap
was implemented, this dependency would disappear.

Parsing VMAs In both Dumping and Restoration, we need to parse the file
proc/self/maps, present on Unix systems, to figure out all the Virtual Memory
Areas available to the process. The reason we are interested is because Native
Methods reside in these, but the locations of these areas changes between runs
due to address space randomization.

We parse this file in the parse proc pid maps function. The algorithm is
as simple as opening the file, iterating the lines using fgets, copying these into
a buffer which we parse with sscanf, and saving the data we’re interested in,
in a ParsedVMA structure. This is the string name of the area, the location of
the mapping, length, and offset within the file.

After this function has run (which it does as one of the first operations on
both Dumping and Restoration), the memory_areas_have_been_parsed flag is
set to true, to support assertions in parts of code that rely on the result of this
function. The parsed memory areas are saved in the global parsed_areas array.

4.5 Simplifications, Trade-offs, and Limitations

As this is exploratory work and time was very limited, making as many simpli-
fications as possible was deemed the wisest approach. The largest of these are
presented here. They all have in common that they have narrowed the space
of conditions under which this implementation of Direct Heap Snapshotting
works, but in narrowing it, made the work actually implementable. None of

27

them should be difficult to solve in theory, but their implementation might of
course be work-intensive.

A contiguous heap As described in section 4.2.1, Epsilon GC is used to
provide a heap which is just a contiguous memory area. An extra large TLAB
is used as described in Figure 3.3 so that the whole used part of the heap is
inside one TLAB this early in initialisation. Thanks to this, there is no need to
implement support for several TLABs in Heap Restoration.2

Unoptimized algorithms Only minimal efforts have been made to optimize
the various algorithms introduced. These are mostly search algorithms. The
VMA parsing algorithm is pretty straightforward, but might have benefited
from finding a different approach to identification than string comparisons. The
mirror restoring algorithm is in principle quadratic, albeit with a low constant
(optimizations are made to try to find the right class at once “often”). Input
sizes are small, and the time taken up by the algorithms is probably not respon-
sible for the largest time wastes. Instead, moving data, reading and writing, is
a more likely culprit.

Making friends, silencing asserts In several places, “good design” and en-
capsulation have been overridden or ignored. If something needed to be changed,
the easy road has often been taken of simply adding that class as a friend where
needed so private fields can accessed. Some asserts have also been removed.
These asserts are well-meaning, but they don’t predict the kind of changes this
work introduces, so the easiest thing to do is to remove them.

None of this is truly necessary All of these compromises, hacks, and sim-
plifications would obviously not be part of a final addition into the OpenJDK
source code. But they have been made with the goal in mind of producing a
prototype. Thanks to these shortcuts, the work was possible to complete in this
short amount of time, and so they are something to be proud of. The author is
confident that if any of this ever leads to real contributions to Java, the capable
people who get the job will have no problem to solve these issues “properly”. A
future thesis student might have to fix some of them in the end, e.g. the TLAB
size can probably not be scaled indefinitely, but the others might as well be kept
for as long as this is exploratory research.

2As TLABs simply offer a “view” into the heap, having multiple wouldn’t actually present
any challenge for Heap Dumping.

28

Chapter 5

Results

The main result has been the prototype itself, published on GitHub at https://
github.com/LudwikJaniuk/direct-heap-snapshotting, in addition to cor-
rectness test results assuring that it is relatively correct, performance measure-
ments, and a set of approaches and methodologies that should facilitate future
work. The final prototype snapshots the heap during a small part of the initial-
ization of the JVM. Additionally, it already saves a bit of startup time under
laboratory conditions.

5.1 DHS-vs-Stock

The Direct Heap Snapshotting versus Stock test is an interleaving test in which a
restored version of the JVM with the DHS patch applied is measured repeatedly
against a completely unmodified version of the JVM. The two things measured
are number of executed instructions, and execution time, for a very short-lived
program.

The stock version executes on average 820,316,08 machine instructions, whereas
the DHS version executes 819,298,56 (that’s 101752 instructions fewer on av-
erage, or a delta of -0.1240%). The time difference is also negative (DHS runs
faster) in all 10 runs, but there is more variation. Stock takes on average 27.878
milliseconds to complete, compared with an average of 27.621 milliseconds for
DHS. This is a time saving of 0.257 milliseconds on average, or -0.9217% change
in total runtime. See Table 5.1 for full results.

29

https://github.com/LudwikJaniuk/direct-heap-snapshotting
https://github.com/LudwikJaniuk/direct-heap-snapshotting

Machine instructions Elapsed time (ms)

Run DHS Stock ∆ DHS Stock ∆

1: 819,308,46 820,324,16 −101,570 26.839 26.933 −0.093
2: 819,319,51 820,301,65 −98,214 27.239 27.499 −0.260
3: 819,264,52 820,330,92 −106,640 27.452 27.578 −0.126
4: 819,319,30 820,331,83 −101,253 27.649 27.818 −0.169
5: 819,278,20 820,319,09 −104,089 27.818 27.918 −0.100
6: 819,294,67 820,306,58 −101,191 28.037 28.071 −0.034
7: 819,306,98 820,333,98 −102,700 27.745 28.114 −0.369
8: 819,324,16 820,312,79 −98,863 27.741 28.129 −0.388
9: 819,272,90 820,305,05 −103,215 27.833 28.288 −0.455
10: 819,296,91 820,294,76 −99,785 27.881 28.469 −0.588

Avg: 819,298,56 820,316,08 −101,752 27.621 27.878 −0.257

Table 5.1: Complete time measurements from the DHS-vs-Stock
test. Each row represents an average as measured by perf stat,
from 400 runs of Stock, followed by 400 runs of DHS. Lowest
differences highlighted in red.

30

5.2 Moments

In order for Snapshot Restoring to succeed, some “fixup” operations must be
performed to repair the state. The runtime of these operations is a limiting
factor in how much time is saved (or lost) in the end. Therefore it is interesting
to analyze which of these takes the longest to run, as it would be the primary
suspect in future optimization efforts. To this end, timestamps were printed
between all the major distinct “time periods” during restoration, and then time
deltas were computed and averaged into Figure 5.1.

History note This analysis already proved useful once. When run initially,
it showed that the “Read Classes Metadata” period was responsible for over
half of the restoration period. This prompted some investigation, and it was
discovered that overcautious macro sizes1 had led to a class metadata file size of
over 2 megabytes, which was taking a long time to read into memory. But only
a fraction of that file was used, the rest was just buffer space. These macros
were changed to only as large values as necessary, and the time taken by the
read operation in turn decreased to a small fraction of the restoration time.

Results As seen by Figure 5.1, the invocation of a Java static method is
responsible for the largest contribution to runtime, followed by the time taken
to restore all the classes, then by the time taken to parse VMA information
from /proc/self/maps, and finally by the restoring of native functions.

Additionally, we have averages on the two total measures presented in Ta-
ble 5.2: The synthetic restore operation was computed as taking on average
1.066 ms, while the normal (no-restore version) equivalent piece of code, when
it is not skipped, took on average 1.191 ms. The difference between these two
numbers is 0.12 ms, but one should look at the DHS-vs-Stock test before making
too hasty assumptions about this being the total time saved of the runtime.

5.3 Correctness Tests

5.3.1 jtreg Test Results

The DHS patch passes all 709 unit tests pre-packaged with OpenJDK. These
are the tests in the /runtime directory. According to Oracle engineers, these
tests are the only ones in the test suite that would be relevant to the changes
introduced by Direct Heap Snapshotting.

5.3.2 Evaluation on Test Programs

The tested programs included a distribution of Apache Tomcat 9 [Fou20], a
SpringBoot [Spr20] server, and minesweeper game written in Java, found online.
Anyone interested is encouraged to test on any Java programs of their choosing.

1Specifically, J NUM NATIVE METHODS = 2000 and J MAX STORED PATH LENGTH = 1000

31

Static Call
38,9%

Misc. Assignments
0,6%
Restore Native Methods
8,2%

Parse VMAs
19,1%

Read Dump Metadata
1,2%

Mmap Heap Snapshot
1,8%

Read Classes Metadata
2,1%

Restore Classes
28,0%

Figure 5.1: Breakdown of periods during restoration process.
Average percentages of the restoration duration shown. Slices
in chronological order clockwise starting at “Parse VMAs”.

Period Time (ns)

Parse VMAs 203,441
Read Dump Metadata 13,039
Mmap Heap Snapshot 19,623

Read Classes Metadata 22,388
Restore Classes 297,506

Restore Native Methods 87,261
Misc. Assignments 6507

Static Call + 412,857

Synth ≈ 1,066,010
Normal - 1,191,985

Synth - Normal = −125,974

Table 5.2: Averages of time periods computed in the Mo-
ments test, including an average of the whole restoration period
(“Synth”) as well as of the whole snapshotted period when that
is being run (“Normal”). Intended reading of the middle col-
umn: “All the periods sum up roughly to Synth, and lastly the
difference between Normal and Synth is presented”.

32

All tested programs were able to run without issues on the modified JVM, except
of course they would eventually run out of memory, since Epsilon GC is used.

33

Chapter 6

Discussion

6.1 Correctness Confidence

Perhaps the biggest goal of this research is to try to get confidence that the heap-
restoring approach works. We are doing a very unorthodox thing: overwriting
the whole heap of a Java program during initialization. How could we ever be
sure that his has been done “right”, leading to a totally correct and consistent
state? After all, changing just one bit of a program’s state can completely
change the rest of the execution. At the same time, we’re not aiming at bit-
exact equality, since some parts of the state depend on the environment and
it is correct for them to be different between runs. In one sense, we can never
be sure that this is correct. However, in another sense, an erroneous reset of
the heap would probably manifest itself with very visible errors. We are doing
this restore at a very early point in JVM initialization, so it is reasonable that
disturbances in program state now would have time to compound and influence
the rest of initialization and ultimately program execution. Therefore, we can be
reasonably confident that this small snapshot is indeed restored correctly, since
not only do test programs execute without problems, but the test suite also
finds no failing tests. Nevertheless, it is possible that some state inconsistency
lies dormant, but would cause bugs in very specific situations that have not
been tested. However, this is the case with all software except perhaps formally
proved programs...

6.2 Sensitive Memory

A research direction for the future might be using a type system approach to
track which parts of data should be part of the snapshot. Some parts of the
state should definitely not be kept, for example the time of program start,
other environment-dependent values, sensitive data such as passwords or cryp-
tographic keys. Conceptually, one could maybe annotate the sources of such
data in the Java API, and then let the type system detect all other values com-

34

puted dependent on these. Something like a “taint-tracking system”, and then
we could save everything that wasn’t “tainted”. These are just some visions
that were discussed in early meetings, but have not been investigated at all in
the actual work in this thesis.

6.3 DHS-vs-Stock

In the comparison in startup time between DHS and a Stock JVM, the test
results show consistently that this prototype of DHS improves startup perfor-
mance, but the difference is minuscule. The relevant aspect however is that
even when capturing such a small part of the startup in a snapshot, timing im-
provement is achieved under at least some conditions. If a larger portion of the
initialization sequence were snapshotted successfully (without requiring much
more expensive fixup procedures), large startup time savings would abound.

Criticism: file caching It should be noted that mapping the heap up prob-
ably has what one could call an unfair advantage in this testing setup. Since
the program is re-run hundreds of times, it is very likely that the heap dump
is cached by the OS in RAM memory, in effect not requiring a disk read. One
might therefore argue that the time gain is invalid, since the use case we are
considering is precisely a cold start scenario; if e.g. the given microservice is
to be run hundreds of times in succession, current microservice frameworks can
already handle that very well and allow the calls to happen without the need of
restarting the JVM in the first place. Our response would be that on one hand,
the time results here are again not the main result, but on the other hand, this
OS-caching of the snapshot file could very well be implemented as a feature.

Unpursued path: daemon idea In the early stages of this thesis, the plan
for a first prototype was actually to optimize CDS loading, by writing a daemon
that would keep the CDS archive in memory, and then just mmap that into the
initializing JVM at the right point in time. The idea was that in a microservice
environment, such a daemon could be constantly on, keeping e.g. a CDS archive
available for faster start, and since that could be the same, shared, CDS archive,
it could be used as a resource between many starting JVMs and would not take
much space. This prototype was prioritized away, but would still have been an
interesting thing to implement. Perhaps future work could try it, seeing as it
should be an easy first step to “get your feet wet”. The daemon could, instead
of keeping the CDS archive in memory, keep the heap snapshot instead. Or why
not both? In retrospect, this idea is also very close to the Nailgun approach.

6.4 Moments

The moments test shows which optimization efforts might give the best return-
on-investment. One should note that the mere act of printing timestamps likely

35

affects the total runtime. Therefore the total runtime resulting from this test
should not be used for analysis in itself, instead one should look to the DHS-vs-
Stock test for a comparison focused on total runtime, with timestamp printing
turned off.

Advice on further optimization The static call is a call to the Java method
Finalizer.janiuk_funtion1, which is the author’s own added method that
explicitly runs the static operations of Finalizer. They make sure thread state
is set up correctly. It’s possible that a different way could be found to achieve
this without calling into Java, but this would require careful analysis of the
side effects, as well as advice from Oracle engineers. If one wanted to optimize
“Restore Classes”, one would need to analyze deeper what actually takes time
there, as this period recursively iterates all the classes loaded and performs
some operations. It is not currently known whether one of the operations or
the iteration itself is the main culprit. “Parse VMAs” might be the period
with the greatest chance of being successfully optimized, as it’s possible that
this information is already parsed somewhere in the JVM codebase, or that
the parsing algorithm can be made more efficient. This period is also a direct
dependency for the “Restore Native Methods” operation, so if that one were
somehow made unnecessary, Parsing VMAs could also be skipped. But this is
unlikely.

6.5 Reliability of Runtime Differences

One might expect the difference between the “Normal” and “Synth” time pe-
riods in the Moments test to match approximately the difference in runtime
measured in the DHS-vs-Stock test. After all, this is the time in initialization
where changes are made. However, this is not the case. Synth runs for 0.126
milliseconds fewer than Normal, whereas the difference in runtime in DHS-vs-
Stock is 0.251 milliseconds. It looks like we’re saving even more time than what
what we see through the Moments test. So where does the difference come
from?

On one hand, there might be other sources of change in the total runtime.
The JVM does many things lazily, such as resolving symbols, or JIT compilation.
Some of these things might have happened already during Normal, thus not
needing to be done later, but since Synth skips a lot of bytecode execution, they
need to be done later in the program’s life time. That could have been one
explanation of unaccounted-for difference — if we were saving less time than
indicated in Moment.

Curiously, the situation we have is the opposite. In the end, one must there-
fore also look at the large variation in runtime and conclude that comparisons
cannot be made directly on the absolute value of the runtime difference. Per-
haps with even more runs and stringent test conditions it could be measured
(one could use a dedicated test server instead of a personal laptop), but it is not
a goal of this thesis to measure these values with such precision. They would

36

be much different in a real setting anyway, due to all the laboratory condition
changes.

6.6 Criticisms

Will this be integrated into Java? Chances are that Oracle would not
take this approach. Oracle have high requirements on stability and robustness,
so if they choose to implement Heap Snapshotting, they need a way to prove to
themselves that it is safe. Despite the tests that have been done, it is totally
conceivable that problems would arise under other, untested conditions. Instead,
JVM developers might focus on refactoring environment-dependent initialisation
such as native function registration to later in the startup process. This way,
the first part can be more safely snapshotted.

Cold starts have not been tested Both the Moments and the DHS-vs-
Stock tests have been conducted with a high degree of repetition, in an attempt
to minimize variance in other factors affecting runtime. However, this means
that the operating system has had a brilliant opportunity to cache all the disk
accesses, instead probably serving the heap snapshot from memory. In effect,
the test does perhaps have an unfair advantage as totally cold start scenarios
might still have to serve a snapshot file from disk. It would definitely be valuable
to repeat the DHS-vs-Stock test in a totally cold-start scenario, ensuring that
all OS file caches are emptied between runs. However, it would also be possible
to set up a real deployment with a snapshot kept always in memory, thereby
avoiding slow disk reads.

Limited testing Another fair criticism of the results is that very limited
testing has been carried out. Indeed, the net time gain might not be repli-
cated on other machines or systems, and there might be programs that have
not been tested which do crash when under Heap Snapshotting. In fact this is
likely. However, what is important is that this much progress was achievable
in a comparatively small amount of man-hours. This points to a real possi-
bility for improvement in the JVM, and this point is not diminished if such
counterexamples are found.

Microservices rarely restart This work focuses on JVM startup optimiza-
tion and addresses serverless deployments as a use case. However, the overall
goal of many microservice frameworks is to fulfill microservice requests contin-
uously without the need of cold starts. If cold starts are minimized, startup
optimization yields little return on investment.

While this observation is valid, the continuous running of a microservice
server requires memory to be occupied, a tradeoff which might be prohibitively
costly for services that are used sporadically. Additionally, in settings where one
must guarantee that no state is kept between service invocations, complete tear-
down and restart between invocations might be necessary. One example is the

37

Secure Multi-execution framework of Devriese and Piessens which guarantees
noninterference [DP10].

Can pointers keep their meaning? The reader is encouraged to visit chap-
ter C for an extended discussion on the feasibility of larger Heap Snapshotting.
The discussion goes into detail on potential problems that may arise with the
many different kinds of references within the JVM, and whether those issues
will in theory be solvable. While there are no certain answers, the discussion
argues in favor of this being the case.

38

Chapter 7

Conclusions & Future Work

Direct Heap Snapshotting is a viable strategy for reducing startup time in the
OpenJDK HotSpot JVM. While the HotSpot codebase is complex, it was pos-
sible for the author to implement a DHS patch for it in a few months.1 Thus
the complexity of implementation is high but not prohibitive. A lot more work
would be required for a complete prototype, but even this small version saves
some startup time already. More broadly, this work shows yet another time the
potential in Checkpoint/Restore or similar schemes, and highlights the unex-
plored potential in improving startup time by applying these ideas to yet more
technologies. The old mentality of not considering startup time an issue ought
to be abandoned, as short-lived programs become more common. It is also
an ergonomics issue, not only for programmers but also for all users of Java
programs.

Future work If continued, this research could reduce JVM startup time,
which in certain applications such as microservices could lead to big savings
on total computation amount. Memory footprint savings are also easy to imag-
ine. A starting point is clear: pushing the snapshot point forward is the first
most obvious target for future work. The work on this was stopped only due to
lack of time, and not any practical problem, so it is likely that there is much
potential there.

7.1 Roadmap

Milestone: snapshot of JVM startup An important milestone will be
when the whole JVM startup sequence can be snapshotted. This will be defined
as the point when the first bytecode of the program gets executed (i.e. not
a bytecode which is part of the usual initialization of the JVM). In a simple
program, this is the main function, and in more complex programs this might

1Granted, with large amounts of support from the amazing Oracle engineers at the JPG
Group in Stockholm

39

be e.g. the first static initializer of a class. Even this seems like an ambitious
goal, as initialization becomes much more complex before it reaches here; for
example, multithreading starts to play a bigger role.

Continuation: snapshot of program initialization Further on, an ambi-
tion can also be to snapshot further than the JVM itself; even more time gains
can be had if e.g. library initializations are snapshotted as well. This might
be implemented with a SnapshotHeap() API that lets the programmer declare
up to where snapshotting would be safe, as afterwards the program depends
on non-deterministic data. With such an approach, even program-internal (i.e.
after libraries) parts could be snapshotted, as long as they are deterministic
enough.

Detecting snapshot unsafety The API approach shifts responsibility on
the programmer to know intricate details about JVM initialisation. This seems
prone to error. Ideally, the heap snapshotting framework would detect if the
snapshotted area of the code will be able to be restored safely. While desirable,
it is not clear at all how to achieve this, but some ideas spring to mind. Perhaps
a type system approach, tagging “safe” and “unsafe” data for snapshotting and
then propagating those labels using static analysis could work?

7.2 Challenges

Implementation cost As the snapshot is pushed later and later in the ini-
tialization sequence, it is possible that each new step will be harder to restore
than the next. Certainly, many important issues are not necessary to handle
this early on, for example multithreading. It might be so that the number of
things that need to be fixed turns out the be extremely large, and that they are
of very varied character, not admitting of generic solutions. We cannot predict
this.

Fixup cost Apart from the difficulty of implementation, the problems that
arise from later snapshotting might turn out to require solutions which simply
take too much time in restoration.

7.3 Project Leyden

It will be interesting to follow what Project Leyden leads to and what design
decisions will be taken. The fact that Oracle has initiated a large project on
this topic is an indicator of the seriousness of the underlying problem.

40

7.4 Research Approaches for Future Work

We hope that this paper will help in future work on Heap Snapshotting. Many
best practices, helpful tips, troubleshooting strategies, and other useful resources
were developed during this work, but these are not suited to be included in a
thesis. Instead, the interested reader should look out for a series of blog posts
that the author aims to publish together with the JPG Group.

41

Appendix A

Build instructions

A.1 Building

First, make sure you can build a stock JVM, instructions can be found in the
OpenJDK documentation [Ope]. Then, apply the DHS patch on top of the com-
mit indicated in the readme, specifically, commit 0905868db490 in mercurial.
It is also recommended to update the hard-coded file paths for the snapshot
(variables heap_dump_path, table_path, and dump_data_path) to paths which
actually exist on your computer. After that, build normally. The working
directory from which one builds is the jdk directory, the one that contains
subdirectory build.

The build command can be e.g. make conf=x64-debug jobs=7 jdk-image.
Of course, this requires that you have done configure first as per normal build
procedure. Also, consult Figure A.1 to replace x64-debug with the appropriate
build type suffix depending on the situation.

slowdebug (linux-x64-slowdebuga) Good for inspecting what happens in
memory, preserves the most low-level details, but is sometimes prohibitively
slow.

debug (linux-x64-debug) Is used to run tests.

product (linux-x64) For time testing. All the assertions are gone.

release I have been advised not to use this by Oracle engineers as it
performs extra steps that are irrelevant unless one is actually shipping a JVM
to customers.

aor linux-x86 64-server-slowdebug

Figure A.1: Different kinds of builds are appropriate for different
goals.

42

Appendix B

The JVM in Depth: A
Focus on Internals and
Startup

This chapter has the goal of summarizing and giving context on the parts of
HotSpot VM internals which are relevant to the understanding of Heap Snap-
shotting. Of course, official Oracle documentation or other educational ma-
terials probably offer a better presentation of these concepts, so the reader is
encouraged to seek such materials out if interested.

B.1 Memory Areas of the Java HotSpot VM

There are many distinct “memory areas” in the HotSpot VM: the Heap, the
Stack1, the Constant Pool, Metaspace, the Code Cache, and so on. For this
thesis, the most important parts are the Heap and Metaspace, as the Heap is
what’s being snapshotted, and Metaspace contains most of the runtime aux-
iliary supporting structures that are intricately linked to the Heap, and these
links must be restored correctly. Figure B.1 gives an example of what might
be in the Heap and the Metaspace in a hypothetical application. This imag-
ined application has only one class, “Person”, which is instantiated three times.
The figure also exemplifies class mirrors and native class representations (i.e.
Klasses), covered later in this chapter.

Heap The heap consists of Objects, and is generally divided into Regions2 to
facilitate garbage collection [Mic06]. It is not necessarily contiguous in memory,

1Not to be confused with the usual stack and heap of a process, which we will call the “C++
heap/stack” in this document if they need to be mentioned. So, all these JVM memory areas
of course reside in the C++ heap.

2If implementing Heap Snapshotting on a discontinuous heap, one might use regions as
useful “chunks” of heap memory.

43

Figure B.1: An illustration of the memory areas of the Open-
JDK JVM most relevant to this thesis, and the main Klasses,
Class Mirrors, and instances in a hypothetical application. The
many ellipses remind us that this is a very incomplete view of
the VM’s memory state.

44

but within this prototype, it is assumed to be. The Objects are all instances of
some class, and for each class there is an instance of the class Class in the heap.
This instance is referred to as the “Java mirror” of that class. Java mirrors are
called so because they are the representation of the class in the Heap, or Java-
land, as opposed to the memory structures that make up the class in Metaspace,
or native memory (see fig. B.1). Those are instances of the C++ class Klass,
or one of its in descendants. Much of the information describing the class (e.g.
the number of fields) is duplicated between these two representations, thereby
the term “mirror”. The class Class has a mirror too, which is an instance of
itself.

TLABs To speed up allocation, each thread has a Thread Local Allocation
Buffer, which is a pre-reserved amount of Heap memory which that thread has
exclusivity over. Therefore it can allocate more memory from there without
locking. Only when the TLAB runs out, does the thread have to get another
one.

Metaspace Metaspace is where most native auxiliary structures reside, which
make up big parts of the functioning of the JVM, but which are not accessible
from within Java. So, an InstanceKlass is not accessible from Java, but its
mirror instance of Class is. Memory in the Metaspace is allocated and collected
differently than the Heap, and does not fall under Garbage Collection as the
Heap does.

Other areas There are many other memory areas in the JVM, each with their
specialized use, but an understanding of the ones above should suffice to follow
this document.

B.2 The Role of Classes

Classes are a very important part of runtime state. Methods, fields, and so on
are all stored in some class. The heap consists of Java objects, which are simply
instances of classes, and so if we are overwriting the heap, we must first make
sure that all the supporting structures of the instantiated classes match up.

Native representations and mirrors Every loaded class in the HotSpot
VM is represented as a “native representation” in Metaspace, and also as a
“Java mirror” on the Heap. The native representation is an instance of the
C++ class Klass or one of its subclasses, while the mirror is a regular Java
object. Since all Java objects must be instances of some class, all class mirrors
are instances of the Java class Class. Perhaps confusingly, this applies for the
mirror of the class Class too - its mirror is an instance of itself.

45

ArrayKlass and InstanceKlass Klass has the polymorphic subclasses In-
stanceKlass and ArrayKlass, among others. So the existence of class A in a run-
ning JVM entails the existence of an instance of C++ datatype InstanceKlass
corresponding to it, and if there are to be arrays of A, A[], then there must also
be a corresponding instance of ArrayKlass. The “class” A[] is therefore treated
as a separate class, and also has its own, separate, mirror.

B.3 Oops and OopHandles

“oop”s in OpenJDK are managed pointers to heap objects [Ora12]. An oop
itself is a pointer into the Java heap. It might be compressed with the Com-
pressedOops feature. Nevertheless, if one looks at e.g. InstanceKlass, it has
a _java_mirror field which is an OopHandle, not an oop, and this represents
quite an interesting mechanism. The OopHandle encapsulates the oop itself and
stores it separately. Why is an extra indirection even necessary? The heap is, of
course, under garbage collection. Objects might be deallocated or move around
as part of their lifecycle, and direct pointers to them from metadata would be
problematic as they would lose their relevance in such events. Therefore, when
e.g. InstanceKlass wants to point to an object, it creates an OopHandle in-
stead.3 If we look at the Handle constructor which takes an oop, we see it runs
thread->handle_area()->allocate_handle to allocate memory for the oop.
This handle area is therefore a centralized location where the raw oops actually
reside, so when they need to be changed or nullified, one might simply look
here.4

How the OopHandle indirection is useful In principle, when restoring the
heap (and especially later, when it’s not so early anymore), we will have to
update where things are in the heap. We might definitely want to scan these
HandleAreas then and just update oops in there. That might very well be
the only reasonable way. In this thesis we have relied e.g. on persistence of
InstanceKlasses, but something like this might be necessary further on.

B.4 Class Loading Roadmap

Chapter 5 of the The Java Virtual Machine Specification [Lin+20b] provides
the authoritative resource on how class loading is supposed to take place. In
short, after being compiled, a class is a classfile which is a binary format. These
classfiles contain bytecodes, which are what the JVM needs to parse, verify, and
then use to initialize the classes in memory. A representation of the class is
created in memory, and the class is loaded. This might be done by the built-in
bootstrap classloader, or by a custom classloader (within this thesis, only the
bootstrap classloader has been used).

3This is well described in the source code: src/hotspot/share/runtime/handles.hpp:37.
4In truth, there are several such areas and it’s all very complicated.

46

After the process of creation and loading, the class must be linked. This
involves verification of the binary representation, preparation which entails ini-
tializing static fields5, resolution of some symbolic references, fields, interfaces,
methods, and so on, and other steps.

Finally, there is initialization, which means executing the class initialization
method, typically named <clinit>. One can expect these to take some time as
they involve executing bytecodes.

A central idea of heap snapshotting is precisely to want to avoid having to
run most if not all of these steps, since their effects on the heap ought to be
gotten from Heap Restoration.

B.5 Class Data Sharing

Abbreviated CDS, Class Data Sharing is a HotSpot feature which reduces start-
up time and memory footprint by pre-loading a set of well-known classes into
an internal representation during installation time, and dumping that represen-
tation to a file. During startup, the file is memory-mapped in, which is much
faster than actually performing operations such as parsing and verification at
start time [Ora93].

AppCDS is an extension to CDS which allows user-defined classes to also be
archived in a similar manner. This process has to be done manually but can
improve startup as well [Ora17a].

Stable pointers As CDS memory-maps its internal representation of classes
into the same location in memory every time, it turns out to have the side effect
in practice of making the memory addresses to these objects the same between
runs, at least on the same machine and the same installation. This effect is
exploited in this thesis.

5A big part of Heap Snapshotting is either “tricking” the state into thinking this has
happened, or actually re-running static initialization manually.

47

Appendix C

Can Pointers Keep Their
Meaning?

This chapter is perhaps a bit philosophical, and involves considerations on the
overall feasibility of heap snapshotting. The main problem is that of pointers of
all kinds keeping their meaning between runs. We work under an assumption
of a more or less complete isomorphy existing between the entity graph1 of the
process at dumping time and at restoration time. The success of CRIU shows
this to be true. In this chapter we explore some thoughts about the problem
in general, not just in terms of where we are in this research. However, we use
examples from the research for illustration, and we focus on the context of the
JVM and the Heap specifically.

The information saved in the snapshot is only valuable insofar as references
and pointers will keep their meaning when restored. For many kinds of references
and pointers, this is not directly the case. What broad categories do we have,
and what solutions exist? The issue is twofold: 1) Are references to each entity
valid upon restoring, and 2) If not, can all the references to it be identified and
updated?

C.1 Native Function Pointers

Let’s start with an example. Method representations on the heap which refer
to native methods, save the native pointer to their implementations in native
libraries. Those pointers will be out of date upon Heap Restore due to address
space randomization. In this case, the problem can be resolved by saving their
identities, that is the names of their memory areas together with their address
within them, and then computing their new locations from /proc/self/pid.

1We are avoiding the term “object graph” as that alludes to only the graph of Java Objects
within the heap. Here we want to talk about these, in addition to all the entities that have any
sort of reference to and from the heap. This includes entities in Metaspace, native artifacts
in the operating system, and possibly many other examples.

48

Thus is problem 1 solved. We also know that the only reasonable references to
these are in Method objects which represent native methods. Luckily, these keep
their addresses intact between runs. Therefore, we can save a table of them and
find them to update their native method pointer. Thus is problem 2 solved as
well. This approach is described in 4.3.2.

Let us now consider some broad categories of references.

C.2 Pointers Within the Heap

These keep their relevance, with the caveat that one might imagine if the base of
the heap changes, then these would all be destroyed too. However, this problem
has not been observed, because the base of the heap doesn’t change (at least
within the conditions of this work). Also, because object pointers are Oops and
Oops are managed pointers, the location of the indirection is what must actually
not change, and again, this seems not to be the case. If the heap were to move
its base, a fixup step of adding an offset to all the oops would be necessary (or
this might be solved with a lazy solution, e.g. a write barrier).

C.3 Pointers from Metaspace to Heap

Generally, the Heap cannot be expected to look exactly the same at the same
point in time between two runs. The same “set of objects” could be expected
to be there, but the way they are organized can have depended greatly on order
of operations, scheduling, memory allocation, etc. Therefore, in principle each
pointer into the heap from outside needs to be found and updated upon heap
restore.

C.3.1 Pointers to “Global Singleton Objects”

The easiest situation is if objects are singletons and have global identity. This
would be for example global important objects such as the ThreadGroup. We
have to save their location and restore them, and as long as they are few, this is
very cheap to do. What makes this operation possible is that each such object
has a clear “identity”: we can talk about the ThreadGroup, and by the virtue
of this identity, save and restore a pointer to it.

C.3.2 Pointers to “Identifiable Objects”

Most heap objects are by far not singletons, so if an object is referenced from
outside, how should one find the corresponding object in the restored heap?
Well, as long as the object has any other external way of being identified, this is
doable. An example are class mirrors. While we couldn’t find the mirror object
at restore (short of doing a total search, perhaps), we can save a table at dump
time stating “the mirror of InstanceKlass x is at address y”. This external

49

identity of the mirror object (being the mirror of persistent entity x) is what
allows us to find it and restore it.

C.3.3 “Unidentifiable Objects”

So what if an object in the heap is referenced by the Metaspace, but has no
external identity that we can rely on? It certainly sounds like such objects would
throw a monkey wrench into the machinery of Heap Snapshotting. However, it
turns out that no such examples have been found so far, and indeed it is very
hard to come up with even thought examples that would satisfy this category.

More formally, to find an Unidentifiable Object, there would have to be an
entity (e) in the Metaspace, that references another entity (h) in the Heap.
However, e is not always in the same location and has no unique identifier by
which it can be found. One wonders if this is even possible. After all, if e has an
important reference to h, but has no global identity, them it must be referenced
by some other entity (say e’), because otherwise how would it ever be found
and accessed? Now e’ might be identityless too, but then the same argument
applies, and it seems if the reference to h is to have some bearing on the program,
there must be some chain of references that ends in some entity E that does
have persistent identity. Then e could be found through the identity of E and
following the same chain. It seems the natural conclusion is that Unidentifiable
Objects are by definition garbage, and we wouldn’t have to deal with them.

One might try to formulate a thought experiment from an array of indis-
tinguishable objects, say a pool of resource objects residing on the heap. But
even then, their locations within the containing array serve as a “good enough”
identity, for if they are indistinguishable, then no one can say that this object
was not first, the other one was. And if they are distinguishable, then from that
distinguishability, identity ought to follow.

C.4 Pointers from Heap to Metaspace

All objects in the Heap are identifiable, by virtue of having a stable position
within the snapshot, so for this kind of pointers problem 2 is solved by default.
Problem 1 might still apply. Easy situations are e.g. InstanceKlass pointers
which have persistence, but this might not be the case in the future, and then
there might be more work required to find the actual targets of the pointers and
solve problem 1.

C.5 Other “Pointers”

There is also the question of handling other types of references to/from the heap,
including e.g. file handles, sockets, and references to volatile memory regions.
The handling of these experiences the same problems even to a greater extent,
and whether they should be attempted or not is a design question. Certainly
a socket represents state setup outside of the program itself, so it seems like a

50

poor candidate for inclusion in Heap Snapshotting. On can look at CRIU for
inspiration on how they have chosen to handle these issues, keeping in mind
that their goals and purposes differ from this work.

51

Bibliography

[Ora93] Oracle. Class Data Sharing. https://docs.oracle.com/javase/
8/docs/technotes/guides/vm/class- data- sharing.html.
Accessed: 2020-05-30. 1993.

[BW01] M Bozyigit and M Wasiq. “User-level process checkpoint and re-
store for migration”. eng. In: ACM SIGOPS Operating Systems
Review 35.2 (2001), pp. 86–96. issn: 0163-5980.

[Mic06] Sun Microsystems. Memory Management in the Java HotSpotTM
Virtual Machine. https://www.oracle.com/technetwork/java/
javase/tech/memorymanagement- whitepaper- 1- 150020.pdf.
Accessed: 2020-05-28. 2006.

[AAC07] Jason Ansel, Kapil Arya, and Gene Cooperman. “DMTCP: Trans-
parent Checkpointing for Cluster Computations and the Desktop”.
In: (2007).

[DP10] D. Devriese and F. Piessens. “Noninterference through Secure Multi-
execution”. In: 2010 IEEE Symposium on Security and Privacy.
2010, pp. 109–124.

[Ora12] John Rose (Oracle). CompressedOops. https://wiki.openjdk.
java.net/display/HotSpot/CompressedOops. Accessed: 2020-
05-30. 2012.

[Pot12] Priit Potter. How many Java developers are there in the world?
https://plumbr.io/blog/java/how-many-java-developers-

in-the-world. Accessed: 2020-06-03. 2012.

[Pic+16] Simon Pickartz et al. “Migrating LinuX Containers Using CRIU”.
In: High Performance Computing - ISC High Performance 2016 In-
ternational Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IX-
PUG, IWOPH, Pˆ3MA, VHPC, WOPSSS, Frankfurt, Germany,
June 19-23, 2016, Revised Selected Papers. Ed. by Michela Taufer,
Bernd Mohr, and Julian M. Kunkel. Vol. 9945. Lecture Notes in
Computer Science. 2016, pp. 674–684. doi: 10.1007/978-3-319-
46079-6_47. url: https://doi.org/10.1007/978-3-319-
46079-6%5C_47.

52

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/class-data-sharing.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/class-data-sharing.html
https://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
https://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
https://wiki.openjdk.java.net/display/HotSpot/CompressedOops
https://wiki.openjdk.java.net/display/HotSpot/CompressedOops
https://plumbr.io/blog/java/how-many-java-developers-in-the-world
https://plumbr.io/blog/java/how-many-java-developers-in-the-world
https://doi.org/10.1007/978-3-319-46079-6_47
https://doi.org/10.1007/978-3-319-46079-6_47
https://doi.org/10.1007/978-3-319-46079-6%5C_47
https://doi.org/10.1007/978-3-319-46079-6%5C_47

[Ora17a] Ioi Lam (Oracle). JEP 310: Application Class-Data Sharing. https:
//openjdk.java.net/jeps/310. Accessed: 2020-05-30. 2017.

[Ora17b] Oracle. jlink. https://docs.oracle.com/javase/9/tools/

jlink.htm. Accessed: 2020-06-04. 2017.

[Red17] Claes Redestad. Startup Challenges with Claes Redestad. https:
//youtu.be/3r_tHGtpU7A?t=320. Accessed: 2020-06-04. 2017.

[Akk+18] Istemi Ekin Akkus et al. “SAND: Towards High-Performance Server-
less Computing”. In: 2018 USENIX Annual Technical Conference
(USENIX ATC 18). Boston, MA: USENIX Association, July 2018,
pp. 923–935. isbn: 978-1-939133-01-4. url: https://www.usenix.
org/conference/atc18/presentation/akkus.

[Fre19] Inc. Free Software Foundation. GNU Emacs Lisp Reference Man-
ual. https://www.gnu.org/software/emacs/manual/html_

node/elisp/Building-Emacs.html. Accessed: 2020-05-22. 2019.

[Wim+19] Christian Wimmer et al. “Initialize once, start fast: application ini-
tialization at build time”. In: PACMPL 3.OOPSLA (2019), 184:1–
184:29. doi: 10.1145/3360610. url: https://doi.org/10.1145/
3360610.

[Fou20] Apache Foundation. Apache Tomcat 9.0.35. https : / / tomcat .

apache.org/download-90.cgi. Accessed: 2020-06-03. 2020.

[Lin+20a] Tim Lindholm et al. The Java R© Virtual Machine Specification Java
SE 14 Edition. https://docs.oracle.com/javase/specs/jvms/
se14/html/index.html. Accessed: 2020-05-22. 2020.

[Lin+20b] Tim Lindholm et al. The Java R© Virtual Machine Specification Java
SE 14 Edition. https://docs.oracle.com/javase/specs/jvms/
se14/html/index.html. Accessed: 2020-05-22. 2020.

[Rei20] Mark Reinhold. Call for Discussion: New Project: Leyden. https:
//mail.openjdk.java.net/pipermail/discuss/2020-April/

005429.html. Accessed: 2020-07-05. 2020.

[Spr20] Springboot. Spring Initializr. https://start.spring.io/. Ac-
cessed: 2020-06-03. 2020.

[Fac] Facebook. Nailgun Background. https://github.com/facebook/
nailgun. Accessed: 2020-06-06.

[Gra] GraalVM. GraalVM. https://www.graalvm.org/. Accessed: 2020-
06-06.

[gro] HotSpot group. The HotSpot Group. http://openjdk.java.net/
groups/hotspot/. Accessed: 2020-06-06.

[Koz] Vladimir Kozlov. JEP 295: Ahead-of-Time Compilation. https:

//openjdk.java.net/jeps/295. Accessed: 2020-06-06.

[Lam] Marty Lamb. Nailgun Background. http://www.martiansoftware.
com/nailgun/background.html. Accessed: 2020-06-06.

53

https://openjdk.java.net/jeps/310
https://openjdk.java.net/jeps/310
https://docs.oracle.com/javase/9/tools/jlink.htm
https://docs.oracle.com/javase/9/tools/jlink.htm
https://youtu.be/3r_tHGtpU7A?t=320
https://youtu.be/3r_tHGtpU7A?t=320
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.gnu.org/software/emacs/manual/html_node/elisp/Building-Emacs.html
https://www.gnu.org/software/emacs/manual/html_node/elisp/Building-Emacs.html
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3360610
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://docs.oracle.com/javase/specs/jvms/se14/html/index.html
https://docs.oracle.com/javase/specs/jvms/se14/html/index.html
https://docs.oracle.com/javase/specs/jvms/se14/html/index.html
https://docs.oracle.com/javase/specs/jvms/se14/html/index.html
https://mail.openjdk.java.net/pipermail/discuss/2020-April/005429.html
https://mail.openjdk.java.net/pipermail/discuss/2020-April/005429.html
https://mail.openjdk.java.net/pipermail/discuss/2020-April/005429.html
https://start.spring.io/
https://github.com/facebook/nailgun
https://github.com/facebook/nailgun
https://www.graalvm.org/
http://openjdk.java.net/groups/hotspot/
http://openjdk.java.net/groups/hotspot/
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/295
http://www.martiansoftware.com/nailgun/background.html
http://www.martiansoftware.com/nailgun/background.html

[Mica] Microsoft. CreateFileMappingA. https://docs.microsoft.com/
en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga.

[Micb] Microsoft. Creating a File Mapping Object. https://docs.microsoft.
com/en-us/windows/win32/memory/creating-a-file-mapping-

object.

[Ope] OpenJDK. Building OpenJDK. https://hg.openjdk.java.net/
jdk- updates/jdk9u/raw- file/tip/common/doc/building.

html. Accessed: 2020-06-04.

[Ora] Oracle. JavaTM Programming Language. https://docs.oracle.
com/javase/8/docs/technotes/guides/language/index.html.
Accessed: 2020-06-06.

[Red] RedHat. Red Hat build of OpenJDK. https://developers.redhat.
com//products/openjdk/download. Accessed: 2020-06-06.

54

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/en-us/windows/win32/memory/creating-a-file-mapping-object
https://docs.microsoft.com/en-us/windows/win32/memory/creating-a-file-mapping-object
https://docs.microsoft.com/en-us/windows/win32/memory/creating-a-file-mapping-object
https://hg.openjdk.java.net/jdk-updates/jdk9u/raw-file/tip/common/doc/building.html
https://hg.openjdk.java.net/jdk-updates/jdk9u/raw-file/tip/common/doc/building.html
https://hg.openjdk.java.net/jdk-updates/jdk9u/raw-file/tip/common/doc/building.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://developers.redhat.com//products/openjdk/download
https://developers.redhat.com//products/openjdk/download

TRITA -EECS-EX-2020:797

www.kth.se

	Introduction
	Problem Description
	Checkpoint/Restore
	The Vision of Heap Snapshotting
	Purpose
	Goals
	Contributions
	Ethical Considerations
	Plan of the Document

	Background and Related Work
	Java Primer
	Previous Work
	GraalVM's ``Run Once Initialize Fast'' with Closed World Assumption
	jaotc
	jlink
	Nailgun
	Oracle's ``Project Leyden''

	Checkpoint/Restore
	The JVM in depth

	Method
	Overview of Implementation
	Usage
	Evaluation: Overview of the Tests
	No performance testing on real-world programs
	System Properties of the Testing Environment
	Testing Conditions

	DHS-vs-Stock
	Moments
	Pretouch
	Methodology Verification

	OpenJDK Unit Tests

	Approach
	Anatomy of the Snapshot
	The Heap Snapshot
	Class and Native Method Metadata
	Snapshot Metadata

	Heap Dumping: Saving the Snapshot
	Saving the Heap to File
	Saving Auxiliary Data Structures

	Heap Restoring: Starting from the Snapshot
	Reading the Snapshot Files
	Synthetic Initialization

	Common Concerns in Implementation
	Simplifications, Trade-offs, and Limitations

	Results
	DHS-vs-Stock
	Moments
	Correctness Tests
	jtreg Test Results
	Evaluation on Test Programs

	Discussion
	Correctness Confidence
	Sensitive Memory
	DHS-vs-Stock
	Moments
	Reliability of Runtime Differences
	Criticisms

	Conclusions & Future Work
	Roadmap
	Challenges
	Project Leyden
	Research Approaches for Future Work

	Build instructions
	Building

	The JVM in Depth: A Focus on Internals and Startup
	Memory Areas of the Java HotSpot VM
	The Role of Classes
	Oops and OopHandles
	Class Loading Roadmap
	Class Data Sharing

	Can Pointers Keep Their Meaning?
	Native Function Pointers
	Pointers Within the Heap
	Pointers from Metaspace to Heap
	Pointers to ``Global Singleton Objects''
	Pointers to ``Identifiable Objects''
	``Unidentifiable Objects''

	Pointers from Heap to Metaspace
	Other ``Pointers''

