
UPTEC IT 20019

Examensarbete 30 hp
Juni 2020

Moving Garbage Collection with
Low-Variation Memory Overhead
and Deterministic Concurrent
Relocation

Jonas Norlinder

Institutionen för informationsteknologi
Department of Information Technology

ii

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Moving Garbage Collection with Low-Variation
Memory Overhead and Deterministic Concurrent
Relocation

Jonas Norlinder

A parallel and concurrent garbage collector offers low latency spikes. A common
approach in such collectors is to move objects around in memory without stopping
the application. This imposes additional overhead on an application in the form of
tracking objects' movements, so that all pointers to them, can eventually be updated
to the new locations. Typical ways of storing this information suffer from pathological
cases where the size of this "forwarding information" can theoretically become as big
as the heap itself. If we dimension the application for the pathological case this would
be a waste of resources, since the memory usage is usually significantly less. This
makes it hard to determine an application's memory requirements.

In this thesis, we propose a new design that trades memory for CPU, with a
maximum memory overhead of less than 3.2% memory overhead. To evaluate the
impact of this trade-off, measurements on application execution time was performed
using the benchmarks from the DaCapo suite and SPECjbb2015. For 6 configurations
in DaCapo a statistically significant negative effect on execution time in the range of
1-3% was found for the new design. For 10 configurations in DaCapo no change in
execution times was shown in statistically significant data and two configurations in
DaCapo showed a statistically significant shorter execution times for the new design
on 6% and 22%, respectively. In SPECjbb2015, both max-jOPS and critical-jOPS has,
for the new design, a statistically significant performance regression of ~2%. This
suggests that for applications were stable and predictable memory footprint is
important, this approach could be something to consider.

Tryckt av: Reprocentralen ITC
UPTEC IT 20019
Examinator: Lars-Åke Nordén
Ämnesgranskare: Tobias Wrigstad
Handledare: Erik Österlund, Per Lidén

iv

Contents

1 Introduction 1
1.1 Purpose and Goals . 3
1.2 Thesis Outline . 3

2 Garbage Collection 5
2.1 The Need for Garbage Collection . 6

2.1.1 The Deallocation Dilemma—When to Deallocate? 7
2.1.2 Delegating Deallocation to Garbage Collectors 7

2.2 Generational Garbage Collection . 8
2.3 Garbage Collection in the Android Runtime 9
2.4 OpenJDK . 10
2.5 The Z Garbage Collector . 11

2.5.1 The ZGC cycle . 13
2.5.2 Using a Forwarding Table to Keep Track of Relocated Objects . 14
2.5.3 Why Forwarding Table Has Large Off-Heap Memory Overhead 14
2.5.4 Live Map . 15

3 Design of a Compressed Forwarding Table 17
3.1 Deterministic Concurrent Relocation 18
3.2 Dealing with Contention on Relocation 19
3.3 Calculating Accumulated Live Bytes for Chunks 20
3.4 Putting It All Together . 22
3.5 Structural Code Comparison With the Original Solution 23
3.6 Pre-Committing Memory During Initialization 23
3.7 The Impact of the New Design . 23

3.7.1 Upper Bound of Memory Overhead 23
3.7.2 Approximating Effective Overhead through Simulation 24

4 Evaluation Methodology 33
4.1 Measuring Throughput . 34

4.1.1 DaCapo Suite . 34
4.1.2 SPECjbb2015 . 35
4.1.3 DaCapo Benchmark Configurations 35
4.1.4 Inferring Confidence Intervals Using the Bootstrap Percentile

Method . 35
4.1.5 Measuring Steady-State Performance in Java Applications us-

ing Short Lived Benchmarks . 37
4.2 Measuring Reallocation Work . 38
4.3 Machines to Collect Data . 38

v

5 Results 41
5.1 SPECjbb2015 . 41
5.2 DaCapo . 41
5.3 Behavioral Impact . 42

6 Conclusions 47

Glossary 53

A Plots 55
A.1 SPECjbb2015 Plots . 55
A.2 DaCapo Plots . 55

vi

List of Figures

1.1 The memory overhead for storing the forwarding in the Z Garbage
Collector. 2

2.1 Example of paging . 6
2.2 The dangers of dangling pointers . 7
2.3 Memory defragmentation . 9
2.4 Remembered set . 10
2.5 ZGC load barrier . 12
2.6 The ZGC cycle . 13
2.7 Forwarding table . 14
2.8 Overview of the forwarding information scheme in ZGC. 15
2.9 Example of entries in the live map. 15

3.1 Example of keeping the order of the objects after relocation. 18
3.2 Pseudo code of simple deterministic address calculation. 18
3.3 Pseudo code of optimized deterministic address calculation. 19
3.4 Pseudo code for initiating relocation of an object. 21
3.5 Pseudo code for relocation of an object that exists on a compact entry. 21
3.6 Using accumulated live bytes to speedup forward address calculation 22
3.7 Bit layout for a compact entry. 25
3.8 How the compact entries are filled step-by-step. (a) 25
3.9 How the compact entries are filled step-by-step. (b) 26
3.10 How the compact entries are filled step-by-step. (c) 27
3.11 Example of how an address can be calculated from the compact for-

warding table . 28
3.12 Overview of the original and new forwarding information scheme. . . 29
3.13 Memory overhead in ZGC vs the new design in BigRamTester 30
3.14 Memory overhead in ZGC vs the new design in h2 30
3.15 Pseudo code of added telemetry for simulating the new design. 31

A.1 max-jOPS results. 55
A.2 critical-jOPS results. 55
A.3 avrora results. 56
A.4 biojava results. 56
A.5 fop results. 57
A.6 h2 results. 58
A.7 luindex results. 59
A.8 lusearch results. 59
A.9 jython results. 60
A.10 pmd results. 61

vii

A.11 pmd results. 62
A.12 xalan results. 63

viii

List of Tables

2.1 Page sizes in ZGC . 11

4.1 Brief description of selected benchmarks in DaCapo. 35
4.2 Configurations used for the benchmarks in DaCapo. 36
4.3 Machines used to collect data. 39

5.1 SPECjbb2015 results. 41
5.2 DaCapo results. 42
5.3 Results of measuring garbage collection work in SPECjbb2015. 43
5.4 Results of measuring garbage collection work in the DaCapo suite (a). 44
5.5 Results of measuring garbage collection work in the DaCapo suite (b). 45

ix

x

Chapter 1

Introduction

A garbage collector collects memory garbage. Memory is considered to be garbage
when it is no longer reachable from a normal user thread. With applications that
leverage modern multicore architectures comes a need for concurrent garbage col-
lection to avoid latency spikes. A garbage collector is concurrent if it is able to collect
garbage concurrently with the execution of normal user threads [1].

To allow fast allocation in garbage collected environments, a common approach
is to use bump pointer allocation [1]. Bump pointer allocation uses a pointer to the
first available byte in memory that is monotonically increased as the application
continues to allocate objects. While this scheme allows fast allocation it also comes
with a caveat that the free memory must be kept continuous. To keep the free
memory continuous, many garbage collectors move objects around in memory to
compact them, thereby avoiding fragmentation. This is typically handled in a pro-
cess where all live objects are moved off of a page which is then free’d. This permits
moving all living objects off of a page in O (l i ve) objects, which is typically a small
number (relatively speaking) due to the weak generational hypothesis [1].

The moving of objects introduces the task of updating all incoming pointers
to moved objects to point to their new location. This typically involves a mapping
from old addresses to new addressen, which is commonly known as forwarding in-
formation. Forwarding information is commonly stored in the space of a moved ob-
ject (reusing that space) or in an auxiliary data structure. In concurrent garbage col-
lectors, the mutator – i.e., an application’s threads in garbage collector parlance [1] –
may access objects at any time. This requires any forwarding information to always
be up-to-date.

Floating garbage is garbage that for some reason was not collected during a
garbage collection cycle [1]. When moving an object, its previous location can be
used for storing auxiliary data. At face value, reusing the memory of a moved object
to store its forwarding pointer is space-efficient. What may be less apparent is that
it may lead to increased amounts of floating garbage and additional latency before
some space can be reclaimed. This is because the old copy must be retained until
we are sure that all pointers to the old object have been updated to the new address
and this leads. If objects are not free’d individually, but rather as the side-effect of
moving all objects on a memory page (some contiguous space), the effect can be
exacerbated.

Memory pressure is correlated with the allocation rate and implicitly with the re-
clamation rate. If the allocation rate is high and reclaiming rate is low, the memory
pressure is high. If the allocating rate is high and the reclaiming rate is high the

1

INTRODUCTION

10 20 30 40 50 60 70

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Memory Overhead in ZGC

GC Round

R
e

lo
c
a

ti
o

n
 o

ve
rh

e
a

d
 (

%
 o

f
h

e
a

p
 s

iz
e

)

BigRamTester

h2

Figure 1.1: Memory overhead due to forwarding information in the Z garbage
collector as observed in two benchmarks, BigRamTester and h2, with a peak
memory overhead of 35% for BigRamTester and 4.5% for h2.

memory pressure can be low. Low allocation rate would always imply low memory
pressure. Since one floating garbage object can prevent a whole page from being
recycled, memory pressure increases.

Floating garbage is reduced when using a separate data structure to hold the
forwarding information (typically referred to as a forwarding table) as no informa-
tion in the moved objects (or the entire memory page) is needed to remap incoming
pointers. Naturally, the forwarding table incurs additional overhead in the form of
one entry per relocated object.

Knowing the total memory usage of an application (application and auxiliary
data needed by the programming language implementation to run it), is needed to
properly size memory of the system running the application.

Some languages offer option to specify an application’s maximum (and min-
imum) heap size. If this value is too big, it might impact performance in various
ways, e.g., due to bad data locality or unnecessarily long garbage collection pauses.
If the value is too low, the application might crash due to an out-of-memory error.
If the memory requirements overshoot available DRAM, performance might drop
considerably due to paging and swapping memory on to disk.

Understanding the total memory requirements for an application is not easy
as it depends on many factors which cannot be known without running the applic-
ation with a representative load. The average case scenario can often be “guess-
timated” – but in the worst case scenario, it might be significantly higher in than
the average case. This is exemplified by Figure 1.1, showing the memory overhead
of the auxiliary data structure holding forwarding information in OpenJDK using
the Z Garbage Collector (ZGC) [2]. The data in the figure shows two benchmarks,
BigRamTester and h2, with a peak memory overhead of 35% for BigRamTester and
4.5% for h2. The upper limit of the memory overhead for storing the forwarding
information is currently 100% in ZGC and this overhead depends on the life cycle of
the objects, consequently it can be hard to reason about the lower and upper limits

2

INTRODUCTION

of the total memory usage of an application. ZGC is one of the garbage collectors
available in OpenJDK which is an open-source implementation of Java. Properly
understanding the memory requirements for an application is important to avoid
out-of-memory crashes (by setting the maximum heap size too low) or unnecessary
slow-downs and wasting DRAM (by setting the maximum heap size too high).

1.1 Purpose and Goals

The purpose of this work is to simplify the the task of determining the memory re-
quirements for applications running on a Java Virtual Machine (JVM). The specific
goal for this thesis is to design and implement an alternative approach to object for-
warding in the Z garbage collector that, without slowing down the JVM considerably,
in contrast to what Fig. 1.1 showed, has a low and predictable memory overhead.
While we use ZGC as a context vehicle to evaluate our design, our approach is not
specific to ZGC. It could, at least in theory, be applicable also to e.g., Shenandoah
and ART’s concurrent collector, to reduce the memory overheads inherent in the
design of their storage of forwarding information.

1.2 Thesis Outline

Chapter 2 argues why garbage collection is important in modern software devel-
opment, and follows-up with a coverage of the parts necessary to understand our
proposed solution. Chapter 3 gives a high-level description of the solution. Measur-
ing performance in a non-deterministic environment like the JVM is a non-trivial
task. Chapter 4 covers the approach taken. Chapter 5 shows the results of the eval-
uation. Finally, Chapter 6 concludes.

3

INTRODUCTION

4

Chapter 2

Garbage Collection

Garbage collection refers to an automated process through which the run-time sys-
tem identifies objects which can be safely deallocated to free memory resources [1].
In this chapter we, begin with introducing the need for garbage collection. Then
we describe the commonly used generational garbage collection algorithm to give
the reader a sense of how ZGC fits into the landscape of state-of-the art garbage
collectors. We also briefly discuss Android Runtime to show that this thesis have a
broader applicability than just within the OpenJDK project. Finally a short descrip-
tion of the OpenJDK project is presented and a detailed description of the garbage
collector that the presented design is implemented on top of, ZGC is given.

A garbage-collected program consists of two semi-independent components:
one or more mutator threads and one or more collector threads [3]. The mutator
threads are assumed to have a finite set of roots, which are a special case of refer-
ences. We denote something as a root if the reference is accessible to the mutator
without traversing any objects. If there is a path to an object from a root, that object
is said to be live. If there is no path to an object from a root in the system, then the
object is unreachable and is considered garbage and may be safely collected. The
number of living objects in the heap are referred to as the live-set.

The full set of activities of garbage collection are typically referred to as a garbage
collection cycle [1] Some collector designs are stop-the-world designs, which means
that the mutator threads are paused during (at least parts of) the garbage collec-
tion cycle. Depending on how a collector handles deallocation, a garbage collection
cycle may or may not collect all garbage objects. Garbage that survives a GC cycle
is referred to as floating garbage. In the case of concurrent garbage collectors, stop-
the-world events may or may not happen but are designed to be as brief as possible,
to avoid pausing the mutators. This typically means that garbage collecting activ-
ities run concurrently with the mutator. The duration of a stop-the-world pause is
referred to as pause time.

Some programming languages support destructors or finalizers which are meth-
ods in an object triggered right before the object is garbage collected. In some lan-
guages, such methods may “resurrect” an object by creating a pointer to the object
about to be deleted in another live object, or in a root [1]. This will not be discussed
further in this thesis, since the forwarding information that this thesis is about, is
orthogonal with regards to that.

Bump pointer allocation is a common allocation strategy in garbage collected
languages as it offers good performance – both in terms of fast allocation and good
locality of reference. In bump pointer allocation, an allocation buffer has a pointer

5

GARBAGE COLLECTION

Virtual

Memory

page 0

page 1

page 2

page 3

4

1

2

6

Page

Table

page 1

page 2

page 0

page 3

Physical

Memory

0

1

2

3

0

1

2

3

4

5

6

7

Figure 2.1: Virtual memory is mapped to physical memory using a page table. An
object that spans the virtual pages 0–1 may be logically in a continuous address
space, but physically placed in a non-continuous address space. The arrows
indicates where the memory is mapped to.

p to the start of the free memory, and allocating n bytes simply means returning
the current value of p and then moving p by n bytes for the next allocation. This
strategy requires the free memory to be contiguous and thus, is prone to fragmenta-
tion. The fragmentation introduced by bump pointer allocation is typically reduced
by paging. Paging is a common memory-management strategy that provides a con-
tinuous address space for applications [4]. It maps varying sizes of chunks of virtual
memory that are logically continuous, to a physical location which may be non-
continuous, using a page table. Since paging utilizes a page table, these chunks can
be placed anywhere in the physical memory, as depicted in Figure 2.1. Since the
virtual chunks can be physically placed anywhere this may lead to better utilization
of memory, i.e., less fragmentation of the physical memory. While fragmentation
between pages, referred to as external fragmentation, is minimized using paging,
internal fragmentation within a page is still a problem if used with a bump pointer
allocation strategy. So garbage collectors that uses paging and bump pointer alloc-
ation usually design the collection cycle to also decrease internal fragmentation by
moving all living objects from one or more pages to new pages. This means that the
new pages will be populated with continuously live objects, i.e., no fragmentation
and the old pages can be recycled without having to explicitly free all their objects
(modulo destructors). This type of garbage collector is known as a moving garbage
collector, since it moves objects around as part of its collection cycle.

2.1 The Need for Garbage Collection

Most non-trivial applications make use of dynamic memory allocation. Dynamic
memory allocation allows objects to be allocated and deallocated during run-time,

6

GARBAGE COLLECTION

free(u1)

User* u1

class User

Name = "Jane"

User* u1

class User

Name = "Jane"

u2 = new User("John")

User* u1

class User

Name = "John"

User* u2

Figure 2.2: The dangers of dangling pointers. The object pointed to from u1 is
prematurely free’d and its space reused by a new User at the same starting
address. Green indicates that the memory is claimed and red indicates that the
memory is unclaimed. This kind of bug may be very hard to detect since it may not
cause a crash.

and sizes of objects, as well as their location in memory, to be determined at run-
time rather than at compile-time. Objects that are dynamically allocated are typ-
ically stored on the heap and not the stack which decouples their life-time from
the stack frame of the allocating function [1]. For this thesis, all dynamic object
allocation takes place on the heap.

2.1.1 The Deallocation Dilemma—When to Deallocate?

The more complicated and dynamic the allocation scheme of a program, the harder
it is to determine when an object can be safely deallocated to free up space for new
objects. Determining whether an object is reachable from the application (live)—
or unreachable, is in the general case a global problem that cannot be solved by
local reasoning. This is brought on by the fact that in most mainstream languages,
pointers which are aliased are indistinguishable from pointers which are not. Thus,
one cannot typically deduce from local reasoning whether the object pointed to by
the variable x is reachable by other places in the code, and whether overwriting the
contents of x overwrites the last reference to an object which should therefore be
deallocated.

Timely deallocation of objects is an important consideration for a program.
Deallocating an object too early gives rise to a dangling pointer whose subsequent
accesses may read inconsistent data (for example if the data has been partially over-
written by new objects, see Figure 2.2 for details). This may corrupt the program or
produce incorrect results and is a common attack vector for programs. If objects
are allocated too late, a program might instead run out of memory, or suffer per-
formance regression due to swapping. In some languages, additional complexity
arises from the lack of support for multiple deallocation of the same object, e.g., in
C1

1) https:
//en.cppreference.com/w/
c/memory/free

and C++2

2) https:
//en.cppreference.com/w/
cpp/memory/c/free

attempting to deallocate an already deallocated object is undefined
behaviour.

2.1.2 Delegating Deallocation to Garbage Collectors

Garbage collectors address the deallocation dilemma by using more or less auto-
mated techniques that discover and reclaim objects that cannot be reached by the
mutator [1]. A simple garbage collection algorithm that over-approximates liveness
uses a counter for all incoming references to an object and only deallocates objects

7

https://en.cppreference.com/w/c/memory/free
https://en.cppreference.com/w/c/memory/free
https://en.cppreference.com/w/c/memory/free
https://en.cppreference.com/w/cpp/memory/c/free
https://en.cppreference.com/w/cpp/memory/c/free
https://en.cppreference.com/w/cpp/memory/c/free

GARBAGE COLLECTION

whose counter reaches zero. The reason why this is an over-approximation is be-
cause the existence of a reference to an object does not necessarily mean that a
mutator will access the object at some point in the future. Another approach, which
is also an approximation for the same reason, is to equate liveness with reachability,
which can be decided by travsersing the pointer structures in the heap from the
roots. Garbage collectors that traverse the heap are typically called tracing collect-
ors.

Garbage collectors must be conservative in their estimation of liveness to avoid
premature deallocation. The cost of over-approximating live objects gives rise to
floating garbage, i.e., objects that are kept alive after a garbage collection cycle
despite they will not be used anymore. This may result in out-of-memory errors or
triggering collections which will significantly slow down the application in order to
find garbage. Some floating garbage is often accepted, since prematurely deallocate
objects causes severe issues and as described in Section 2.1.1, this may lead to a
non-functional program, or because it is more efficient.

In a software engineering context, the major benefit of using garbage collec-
tion is that it allows developers to write modules that have high cohesion and low
coupling. Explicit memory management forces the modules to consider other mod-
ules [1]. From an economic perspective, it may desirable to avoid explicit memory
management in order to increase productivity and lower development costs [1].
In a 1985 study by Rovner [5], it was approximated that the development team for
Xerox’s Mesa system spent 40% of their time implementing correct explicit memory
management.

When using bump pointer allocation, fragmented memory is problematic. Con-
sider the left hand side in Figure 2.3 and that we want to allocate memory for an
object that would fit into one row. While there is space available between A–D and
D–F, we cannot access this address space because bump pointer allocation only
allows for allocating monotonically increasingly addresses. Relocating memory to
eliminate fragmentation is called compaction and is depicted in Figure 2.3. Many
collectors free memory as part of compaction. When all live objects have been
moved off of a page and copied into continuous memory on some other page, all
objects on the first page can be implicitly free’d in constant time by recycling the
entire page [1]. This enables reclaimaing in order of live objects as opposed to order
of garbage objects, which is typically faster given the weak generational hypothesis
(see below) [1].

2.2 Generational Garbage Collection

A source of performance regression, especially in tracing collectors, is the repeated
processing of long-lived objects, since this incurs a cost without—typically—any
benefits. A generational garbage collector attempts to lower this cost by mapping
objects on the heap into different generations depending on their age. For simpli-
city, consider two generations which we will call young and old (several generations
are possible). The idea is to process the young generation often and the old gen-
eration more infrequently. This is beneficial because tracing is O (live objects) and
most young objects will be garbage, meaning great return on investment with re-
gards to reclamation and minimal repeated work on old objects. That objects tend
to die young is also known as the weak generational hypothesis [1]. As the weak gen-
erational hypothesis is assumed to hold for most programs, a generational garbage
collector is (in some shape) a common GC design pattern.

8

GARBAGE COLLECTION

Page X
A

-

-

D

-

F

compactation

Page Y
D

F

A

-

-

-

Figure 2.3: Memory defragmentation. The page to the left is fragmented. Through
compaction the fragmentation is removed in the page to the right. Most schemes
also allow the objects to be relocated in a different order and even to different
pages.

Traditionally, generational garbage collectors divide the heap into different
spaces, one part for each generation. Objects are born in the youngest genera-
tion [1]. Objects that survive n amount of garbage collector cycles may get pro-
moted. Promoting an object to another generation involves copying it from one
heap space into the other. Typically a minor collection collects only young gen-
erations and is performed often, while a major collection collects all generations
and is performed more infrequently, thereby avoiding trying to collect long-lived
objects.

To avoid tracing the entire heap (which would defeat the purpose of dividing
the heap into multiple spaces) special measures must be taken when performing a
minor collection [1]. Pointers from older generations to objects in the younger gen-
eration are usually referred to as intra-generational pointers. If a minor collection
is performed and intra-generational pointers are not considered, then objects may
get prematurely free’d. Generational garbage collectors store all intra-generational
pointers in what is usually referred to as a remembered set. A remembered set is
some data structure that has the invariant that it must contain all intra-generational
pointers for that particular generation.

As depicted in Figure 2.4, a remembered set is needed such that object D is not
collected during a minor collection. To maintain the invariant that the remembered
set always contain all intra-generational pointers, the mutator must update the
remembered set as such pointers are created or destroyed. This is typically achieved
using write barriers. A write barrier is a special piece of code which will be executed
when writing to memory, which will update the remembered set as needed.

2.3 Garbage Collection in the Android Runtime

Android is the leading operating system on smart phones, with a market share of
72% (March, 2020) [6]. Android uses a Java runtime and while other languages are
supported, applications for Android are primarily written in Java. Some parts of An-
droid uses code from the open-source implementation of Java, OpenJDK. The An-
droid runtime (ART) provides its own garbage collector (not shared with OpenJDK),
which is a concurrent moving collector [7] since version 8.0 (released 2017), and a
concurrent moving generational collector since version 10.0 (released 2020) [8]. In

9

GARBAGE COLLECTION

Young Generation Space Old Generation Space

Roots

A B

CDE

R
e
m
s
e
t

H G

F I J

Figure 2.4: A remembered set voids the need to traverse the entire heap to avoid
prematurely freeing objects. Doing a minor garbage collection on the young
generation space without considering any pointers from the old generation space
could lead to prematurely freeing an object. The circles represents objects and the
arrows represents a pointer to the objects.

a concurrent moving collector, objects are relocated as the mutator is running. This
creates a need for storing forwarding information in a compact way. To accomplish
this, they use the old space in moved objects to store the new location.

2.4 OpenJDK

OpenJDK is an open-source implementation of Java. It provides a Java Develop-
ment Kit (JDK) which includes the Java Runtime Environment (JRE) along with
tools to compile and debug Java applications. The JRE consists of the Java Virtual
Machine (JVM) and libraries [9].

The JDK is used daily by millions of people and thousands of businesses [10]. It
is a large and complex software engineering project. There are currently 15 497 289 3

number of lines of code in the entire OpenJDK. Making changes can, therefore, be a
delicate process and the bar of entry for a new developer of OpenJDK is high. Some
parts of the code are old and can be hard to read. One example is optimizations
introduced 20 years ago which are not needed today, like efficient usage of each bit.

OpenJDK offers a wide range of garbage collectors, which can easily be changed
by an input parameter when starting the JVM. There is currently a selection five of
garbage collectors [11, 12]:

1. Serial Garbage Collector (3 385 lines of code)

2. Parallel Garbage Collector (20 510 lines of code)

3. G1 – Generational Garbage Collector (50 274 lines of code)

4. The Z Garbage Collector (24 315 lines of code)

5. Shenandoah Garbage Collector (33 532 lines of code)

3git ls-files | xargs cat | wc -l on commit eccdd8e60399a4b0db77b94e77bb32381090a5c6

10

GARBAGE COLLECTION

The serial, parallel and generational garbage collector are all three different
implementations of generational collectors. The serial garbage collector will run
serially along with the mutator and thus all mutator execution is paused and no
advantage of multi-core processors are utilized. The parallel garbage collector still
pauses the mutator during the entire garbage collection but uses several garbage
collector threads to take advantage of multi-core processors to process garbage
faster. G1, the default garbage collector since JDK 9, pauses the mutator in some
phases, but others are done concurrently with the mutator, such as walking the
object graph to find all living objects. Since these three, perform relocation when
the mutator is paused, the most compact way of storing the forwarding information
is using the old object’s space.

The Z Garbage Collector (ZGC) and Shenandoah differ from the first three col-
lectors, by being single generation and more importantly, by performing relocation
concurrent with mutators. Both were designed with low pause times and in mind.
ZGC and Shenandoah have significantly lower pause times than the other collect-
ors [13, 14]. Since ZGC and Shenandoah do concurrent relocation, they need to
store forwarding information in an apt way.

2.5 The Z Garbage Collector

The Z Garbage Collector (ZGC), is a concurrent and parallel garbage collector, de-
signed around three goals [13]:

1. pause times should not exceed 10 ms

2. pause times should not increase with heap or live-set size

3. it should be able to handle heap sizes from hundreds of megabytes up to
several terabytes

Memory allocation in ZGC is done using pages and bump pointer allocation [2,
zPage.inline.hpp:228-243, zPage.hpp:42]. There exists three types of pages: small,
medium and large [2, zGlobals.hpp:54-56], as depicted in Table 2.1. Since objects
greater than 4MB get their own page, no bump pointer allocation is needed for
large pages [15].

Page Type Page Size Object Size

Small 2MB [0, 256]KB
Medium 32MB (256KB, 4MB)
Large ≥4MB ≥4MB

Table 2.1: Page sizes in ZGC. (Figure taken from [15]). It should be noted that this
table was correct in previous versions of ZGC (and for the paper that this table is
reproduced from), but the commit [2] that this thesis builds upon on dynamically
changes the size of medium pages depending on the machine. The table should,
therefore, be viewed as an approximation of what range the pages will span and
the size of the objects that they will contain.

11

GARBAGE COLLECTION

An important design point in ZGC is its construction around load barriers
rather than write barriers. In run-time systems, a barrier is some code triggered
at some event [1]. As mentioned in Section 2.2, write barrier typically trigger on a
write to a field, and a load barrier when a pointer is loaded to the stack. A barrier
typically has a common fast path and a less common slow path [1]. As depicted
in Figure 2.5, the fast path of the ZGC load barrier is just returning the read value
whereas the slow path will do a bit more work and will, therefore, be slow in com-
parison.

One common optimization in modern CPUs is speculative execution and branch
prediction [16]. Loading memory takes many CPU cycles and we want to spend as
much as time as possible doing something (instead of waiting on memory loads).
Speculative execution and branch prediction uses time spent on waiting on memory
loads to execute a branch of code, which result may or may not be used, since the
predicted branch to execute may be incorrect [16, 17]. Due to accuracy of modern
branch predictors, the branch prediction will almost always correctly predict the
fast path, reducing the effective cost of having a load barrier.

uintptr_t barrier(uintptr_t addr) {
if (is_good_or_null(addr)) {

// fast path
return addr;

} else {
// slow path
uintptr_t good_address = look_up_new_address(addr)
return good_address;

}
}

Figure 2.5: The ZGC load barrier executed when a pointer is loaded from the
stack to the heap.

The load barriers in ZGC allow mutators to detect that a pointer is effectively
dangling because an object has been moved as part of garbage collection. This
causes the load barrier to take the slow path which looks up the new address of
the object from the forwarding table. To avoid taking the slow path of subsequent
accesses, the old dangling pointer is updated with the new location (not shown in
the figure). In ZGC, this is referred to as “self-healing”. This means that mutators
will never observe object movement due to GC, which means that this design effect-
ively decouples garbage collection threads and mutator threads. To further lower
the overhead cost of load barriers, ZGC only allows object relocation to happen in
specific phases, which reduces the number of times a load barrier may trigger the
slow path for a particular reference to once per garbage collector cycle.

Memory deallocation in ZGC happens as a side-effect of defragmentation. At
the end of a ZGC cycle, all objects on sparsely populated memory pages will be
moved over to another page and the original page will be free’d [2, zRelocate.cpp:182-
205].

A pointer’s color [2, zBarrier.inline.hpp:139-156]. determines whether the fast
path or the slow path in a load barrier are taken. ZGC has two color categories: good
and bad [2, zGlobals.hpp:80–89] and a pointer’s color is stored in the higher-order

12

GARBAGE COLLECTION

STW
(1)

STW
(1)

STW
(1)

STW
(2)

STW
(1)

STW
(3)

MR
mark/remap

EC RE
evacuation

candidates
relocation

t

Figure 2.6: The ZGC cycle has three minimal stop-the-world pauses, aiming at
most 10 ms in total per cycle, and three distinct concurrent phases. These are
performed concurrently with the mutator and utilizes several garbage collector
threads where possible (denoted by the three arrows). The arrows within the boxes
represents that this phase is concurrent and parallel.

bits of the pointer addresses [2, zGlobals_x86.cpp:30–136].
A good colored pointer is guaranteed to point to the correct memory location

but a bad colored pointer may point to an incorrect memory location. All threads
are always in agreement on what color is considered good [2, zBarrierSet.cpp:91,
zRelocate.cpp:50, zMark.cpp:135], which is handled through a brief stop-the-world
pause. All pointers need to be verified at the beginning of each garbage collector
cycle, therefore, at the beginning of each garbage collector cycle the color of all
pointers is considered to be bad. This means that at the start of a garbage collector
cycle, all references loaded to the stack will trigger the load barrier’s slow path mean-
ing all dangling pointers due to object relocation will be trapped.

2.5.1 The ZGC cycle

As depicted in Figure 2.6 one ZGC cycle has three pauses [2, zDriver.cpp:377–409] in
which all mutator threads are stopped, denoted STW, and three concurrent phases:
(1) mark and remap (MR), (2) select evacuation candidates (EC) and (3) relocation
(RE).

The first STW, denoted as STW (1) decides which color is the good color by
alternating two colours [15, 18]. This indirectly means that all pointers who were
good in the the previous cycle are now bad, and will trigger the slow path on first
load during the next cycle. In the first concurrent phase, the mark and remap phase
(MR), object graph traversal is performed on all roots to identify all live objects. If
the garbage collector finds any pointer with a bad color, the pointer will be updated
to the current address and given the color. Pages are selected for relocation based
on the density of their live population. To be able to decide if a page is sparsely pop-
ulated, the size of all living objects on a page is recorded during the MR phase. STW
(2) is needed as a synchronization point to ensure that the object graph traversal
is completed. The EC phase may then begin, which will select all pages that have
“too few” living objects. The selected pages are referred to as the relocation set. At
the end of EC, a final STW (3) begins4

4) During STW (2) and STW (3)
reference processing is also
performed. Reference processing
is about handling non-strong
reference types, which is an API
through which a Java developer
may interact with the GC. This is
orthogonal to the work in this
thesis, and we we refrain from
discussing it further.

. During the STW (3) pause, the good color
will change which will make all pointers in the heap invalid. Mutators will, there-
fore, take the slow path, the first time any pointer is loaded. A relocation will be
preformed if the object is living on a page that was selected as an eviction candid-
ate otherwise a remap is preformed. After the final STW the RE phase takes place,
where garbage collector threads will relocate all live objects in EC to new pages [2,

13

GARBAGE COLLECTION

from to
0x0 0xf0

0x12 0xf12

... ...

Figure 2.7: Example of a forwarding table for a specific memory page. Each row is
an entry mapping a from address on the page to a to address on one x or more
other pages.

zDriver.cpp:377–409].
Mutators and garbage collector threads may contend on relocating the same

objects. This is rare for most applications and is handled by introducing a lineariza-
tion point on the insertion in the forwarding table [2, zForwarding.inline.hpp:137-
159]. When failure to insert a new object in a forwarding table, the failing thread
undoes the allocation and simply reads the existing entry in the forwarding table.
Because of this design, a relocated object’s location will depend on what thread
won the race to relocate it – a mutator or a GC thread.

2.5.2 Using a Forwarding Table to Keep Track of Relocated Objects

ZGC uses a forwarding table to store the new address of relocated objects. To this
end, each page selected during EC will have an associated forwarding table, as
depicted in Figure 2.7, which maps the old address to the new address [2, zForwar-
ding.hpp, zForwardingEntry.hpp]. Any access to an address that has a bad color
must check if there is an associated forwarding table to that page [2, zHeap.inline-
.hpp:98–102, 118] and if so, then we must perform a relocation and/or remap the
stale address to the new location.

As depicted in Figure 2.8, ZGC structures the forwarding information at three
levels: a forwarding table (ZForwardingTable) for all relocated pages, forward-
ing information for a single page (ZForwarding) and forwarding information
for an object in a page (an entry in ZForwardingEntry). The forwarding table
is used to look-up if there are any forwarding information for a single page. The
forwarding information about the single page is used to map the old address to the
new address.

ZGC stores only the offset of the old address in the from page, since the full
address can be calculated as the sum of the offset and the from page base address [2,
zForwardingEntry.hpp:31–46]. A third column called populated tracks if the row
is in use, and is thus able to differentiate between NULL and an entry that has
not been updated [2, zForwardingEntry.hpp:31–46]. In the pathological case, an
allocate attempt resulting in out-of-memory would result in a NULL address. Thus
that bit is needed to be certain that the field has been updated.

2.5.3 Why Forwarding Table Has Large Off-Heap Memory Overhead

The ZForwardingTable is implemented using a map data structure, where the
hash function provides constant time lookup. Performing modulo, a mod b, is usu-
ally an expensive operation but may be implemented efficiently with a bitwise AND
operation if b. Therefore, to facilitate this, the amount of ZForwardingEntry
is based on the number of live objects on the page times 2 and rounded up to the
nearest power of two 5

5) nentries =
round_up_power_of_2(

page->live_objects() *
2)

. While it is computationally efficient, it has according from

14

GARBAGE COLLECTION

ZForwardingTable
ZForwarding

ZPage(old)

ZForwardingEntry

From Index To Offset

0 0xE00000

16 0xE00010

40 0x2000320

192 0xE03200

... ...

320 0x2000FA0

Populated

1

1

1

1

...

1

}round_up_power_of_2(

 page->live_objects() * 2

)

Figure 2.8: Overview of the forwarding information scheme in ZGC. The arrow
represents a pointer, e.g. ZForwardingTable has a pointer to ZForwarding
that has a pointer to the old page (ZPage (old)) and to the table containing all
entries (ZForwardingEntry).

a code comment in the source code of ZGC on average only a load factor of 50% [2,
zForwarding.cpp:32–35]. This and the inherent fact that it needs to store an entry
for each object is the cause as to why the off-heap memory overhead can be large.

Assume that a page is selected for relocation and that it would fit n amount of
the smallest allocatable object, which in ZGC is of size 16 bytes. A theoretical worst-
case occurs when this page contains n −1 objects, since the number of entries is
determined by first doubling the number of live objects and then round up to the
nearest power of two. This results in needed as much space for the entires as for
the entire page, i.e., a 100% memory overhead.

2.5.4 Live Map

During object graph traversal in the marking phase, MR in Figure 2.6, the address
of each object that is live, is stored in a live map. The live map is a compact data
structure implemented using a bit map to represent a live object starting at a par-
ticular address (or not). Each bit in the live map represents a word, 8 bytes in ZGC.
To cover the entire addressable space on a small page (2 MB), we thus need 242 144
bits. Each page has its dedicated live map and this can be traversed to get the ad-
dress of all live objects residing on that page, which is a more efficient way of finding
all live objects as opposed to doing a full object graph traversal of all roots.

Let us consider Figure 2.9. For simplicity, assume that the page’s start address
is 0x0. To calculate the address of the first living object we should take the start
address 0x0 and multiply with the size of a word times the index we encountered:
0x0 + 0x8 · 1 = 0x8.

0 1 0 0 0 0 0 ... 0

Figure 2.9: Example of entries in the live map.
Assuming that the first entry is recorded at the most left hand side.

We have now introduced garbage collection in general and ZGC in particular. In
the next chapter, we propose a new design for a compressed forwarding table that

15

GARBAGE COLLECTION

trades memory for additional computation on forwarding table lookup. Some simil-
arities with the new design is found in the garbage collector called Compressor [19].
It seems that the high level design is similar to ours, but we differ on optimization
and contextual decisions.

16

Chapter 3

Design of a Compressed Forward-
ing Table

The ZGC way of storing forwarding information A → B for each relocated object A
to its new location B as a separate entry in a hash table is computationally efficient.
Each entry needs approximately 128 bytes (64 bytes for A respectively B), but to
improve lookup performance, hash tables grow in size in such a way that memory
is allocated for unused entries, making the effective cost of each entry considerably
higher.

This chapter proposes a new design for storing forwarding information on a per-
page level in a way that allows B to be calculated on-the-fly. The design results in a
compressed forwarding table with a worst-case memory overhead of< 3.2%. This is
achieved since we are targeting to use only 64 bits per entry in the table, additionally
this allows for good cache performance. As such, this design immediately solves
the problem of different programs, or different runs of the same program, or even
different phases of the same program, giving rise to considerably different memory
overhead. Chapter 5 investigates the performance impact of this design, e.g., as
each lookup requires additional computation. These changes will become clearer
further on.

In this chapter it is important to keep in mind that when referring to old pages
and objects living on old pages, this also implies that they are in the relocation set.
As mentioned in Section 2.5.1, pages/objects in the relocation set are subject to
relocation. All living objects on old pages will be moved to a new page allowing all
old pages to be free’d. In ZGC, there is no way to a priori calculate the new location
of an object on an old page as relocations performed by mutators move objects
into their own allocation buffers. A key change in the new design is “deterministic
relocation” which means that an object’s forwarding address is constant, regardless
of who performs the relocation. Storing forwarding information about each object
explains why the high off-heap memory overhead can become large. Shenandoah,
ART and ZGC allows objects to be relocated non-deterministic addresses1 1) While the address range that

objects will be relocated to might
be known, their design does not
support knowing the exact
address that the object will get.

. This
means that they require to store forwarding information on the per-object level.
The new design of “compact forwarding information” is not specific to ZGC and
should apply to other garbage collectors such as Shenandoah or ART.

For the sake of simplicity, this chapter is written as if there were only one old
page and one new page.

17

DESIGN OF A COMPRESSED FORWARDING TABLE

3.1 Deterministic Concurrent Relocation

A key component of the new design is making relocation deterministic in the sense
of an relocating an object on an old page to a predetermined address regardless of
who is performing the relocation: a GC thread, or a mutator. This voids the need to
store each object’s forwarding address.

The deterministic relocation scheme moves all old objects in the address order
on the old page to the new page, as depicted in Figure 3.1. To calculate the forward-
ing address B of an object A on a page P , we must calculate the sum of the sizes of
all live objects on P upto A. This gives us the object’s offset on the page to which
it will be relocated. Figure 3.2 shows the code for calculating the new forwarding
address for a given old address in pseudo C++.

X
(old page)

A

-

-

D

-

F

relocate
objects

Y
(new page)

A

D

F

-

-

-

Figure 3.1: Example of keeping the order of the objects after relocation.

uintptr_t new_address(uintptr_t old_address) {
size_t live_bytes_preceding_address =
count_live_bytes_preceding(old_address); // O(n)

return
new_page()->get_start_address() +
live_bytes_preceding_from_address;

}

Figure 3.2: Pseudo code of simple deterministic address calculation.

Naturally, the design above is not computationally efficient as it needs to re-
peatedly calculate the size of the same object to perform multiple relocations. We
avoid this by dividing each page into smaller fixed-size chunks and for each chunk
keeping track of the sum of the sizes of all living objects in the preceeding chunks.
Logically, this has the same structure as a forwarding table, but the number of
entries is much smaller as each chunk ranges over multiple objects.

With this in place, to calculate A → B , we first calculate the chunk in which A
resides (O (1)), to lookup the preceeding live bytes PLB in constant time. Then, we
only need to count the live bytes preceeding A inside the chunk itself, CLB, (O (n)).
Then, B can be calculated as PLB+CLB. Figure 3.3 shows this in pseudo C++. The
new algorithm is linear in the size of a chunk, as opposed in the size of a page.

By performing the precalculation of preceeding live bytes for each chunk in the
garbage collector threads, this cost is hidden from the mutator threads, provided
that there are available cores in the machine that are free to do garbage collector

18

DESIGN OF A COMPRESSED FORWARDING TABLE

uintptr_t new_address(uintptr_t old_address) {
size_t live_bytes_preceding_entry_address =
accumulated_live_bytes(old_address); // O(1)

size_t live_bytes_within_entry_address =
count_live_bytes_within_entry(old_address); // O(n)

return
new_page()->get_start_address() +
live_bytes_preceding_entry_address +
count_live_bytes_within_entry;

}

Figure 3.3: Pseudo code of optimized deterministic address calculation.

work. To find a good balance between computational efficiency and memory usage
it is imperative to find a good chunk size.

Finally, when relocation is performed, we relocate an entire chunk, not single
objects, since we need to deal with contention between garbage collection threads
and mutator threads, described in more details below.

3.2 Dealing with Contention on Relocation

As mutators are running concurrent with GC threads during relocation, a mutator
might access objects on a page that is slated for relocation. If the GC threads have
already relocated this page, remapping occurs in the slow path of the load barrier.
However, if GC thread have not yet relocated the object, the mutator will perform
the relocation before going forward. This might cause GC threads and mutators to
occasionally compete on relocating the same object.

In ZGC, such competition might lead to two copies of the same object ending
up at different locations, but only one of the locations will be added to the for-
warding table, and become the new address of the object. In the new design, even
though both GC threads and mutators would relocate the object to the same place,
we could end up in an incorrect state in the program: Consider the object A and
suppose that A is relocated by the mutator thread, which subsequently writes to a
field in A after the relocation. If a garbage collector thread is performing the reloca-
tion concurrently with the mutator, this could accidentally overwrite the updated
field in A, causing the update to be lost.

The problem is solved by preventing an object from being relocated more than
once, which can be achieved by introducing an additional synchronization step
in the relocation algorithm. Pseudo code for the synchronziation is found in Fig-
ure 3.4. As can be seen in that figure, before a relocation of an object can begin, we
need to find its compact entry and then try to take a lock for the object’s address.
Since threads are competing to relocate objects someone else might have already
performed relocation, so when we acquired the lock we must begin with checking
that this object still needs relocation. If the object still needs relocation, then reloca-
tion of the entire entry is performed and the pseudo code for relocating all objects
on the compact entry is found in Figure 3.5. We do not want to copy an object more
than once, so all objects within a compact entry are moved at a time, as this allows
us to store whether the objects have been moved or not using only one bit in the

19

DESIGN OF A COMPRESSED FORWARDING TABLE

compact entry. It would have been possible to store whether an object has been
moved or not in a more fine-grained fashion, but that would have increased the
memory usage and probably incurs poor cache performance, because it would be
hard to fit into our target of only using 64 bits per entry.

The overhead and performance impact of the additional synchronization step
is inherently tied to its granularity. In one end of the spectrum, we could have one
global lock, forcing all relocations to synchronize. This would be highly inefficient,
since most relocations are unrelated and thus have no contention problem. In the
other end of the spectrum we could synchronize each individual object relocation.
This would create a large memory overhead and while it does happen that the
mutator and the garbage collector thread compete to relocate the same object, it
is not the common case. Thus, a middle-grained synchronization scheme is likely
the better choice.

We suggest that the address space is divided into k subspaces and that we have
a lock for each subspace. The number of subspaces will be decided by multiplying
the number of cores in the machine by two and rounded up to the nearest power of
two. Modulo, a mod b, is usually an expensive operation but may be implemented
efficiently with a bitwise AND operation if b is a power of two. We are assuming that
the number of subspaces will be large enough as to not cause too much contention
for the locks. If the design is successful the number of subspaces is something that
could be further examined and evaluated, since this assumption for approximating
the number of subspaces may be incorrect.

3.3 Calculating Accumulated Live Bytes for Chunks

When calculating the new address for object F in Figure 3.1, we need to know the
size of all preceding live object on the old page and the starting address of the new
page. A naive approach to get the size of all preceding living objects would be to
traverse the live map described in Section 2.5.4 and get the size of the object from
its metadata recording.

The two main issues with this naive approach is first, the obvious problem of
needing to scan the large sections of the page several times, for each object to be
moved. The second, more subtle problem, is that to be able to ask the object about
its size we can’t free the old page until every pointer has updated its pointer to
the new address. The current behavior in ZGC is to free the old page as soon as all
objects have been relocated, so in comparison to that, it would increase the floating
garbage.

A better design is to divide the page into Q amount of compact entries, divisible
by 2n ,n ∈N. Let each compact entry represent the amount of previously living ob-
jects before that compact entry. To get the size of previously living objects you would
then use the associated compact entry and scan the live map for the addresses who
is not covered by the compact entry. This significantly reduces the search time and
allows for freeing the old page as soon as all objects have been relocated, at the cost
of some space. An example of dividing a page into compact entries is depicted in
Figure 3.6.

The more fine-grained the compact entries are, the less you would have to
search in the live map. The most extreme case is to have as many compact entries
as there are addresses, which then would essentially be the same as the forwarding
table from the original ZGC, described in Section 2.5.2.

20

DESIGN OF A COMPRESSED FORWARDING TABLE

uintptr_t relocate_object(ZCompact* compact,
uintptr_t from_addr) {
ZCompactEntry *c = compact->find(from_addr);

lock_map.lock(from_addr);
if (c->copied()) {
uintptr_t to_addr = compact->to_offset(from_addr, e);
lock_map.unlock(from_addr);
return to_addr;

}

const uintptr_t to_addr =
relocate_object_inner(compact, from_addr);

lock_map.unlock(from_addr);

return to_addr;
}

Figure 3.4: Pseudo code for initiating relocation of an object.

uintptr_t relocate_object_inner(ZCompact* compact,
uintptr_t from_addr) {
ZCompactEntry* c = compact->find(from_addr);
const uintptr_t to_addr = compact->to_addr(from_addr, c);

if (c->copied()) {
// Already relocated
return to_addr;

}

// Reallocate all live objects within the compact entry,
// from_addr is one of these objects
for (from_addr_entry in c) {
uintptr_t to_addr_entry =
compact->to_addr(from_addr_entry, c);

object_copy(from_addr_entry,
to_addr_entry,
object_size(from_addr_entry));

}
c->set_copied();

return to_addr;
}

Figure 3.5: Pseudo code for relocation of an object that exists on a compact entry.

21

DESIGN OF A COMPRESSED FORWARDING TABLE

Live Bytes Live Map

0 0100...0000

128 0000...0000

128 0001...0000

192 0000...0000

... ...

320 0000...0000

Page

Object to

relocate

Divider

Figure 3.6: Using pre-calculated accumulated live bytes speeds up forward
address calculation. Page dividers divide pages into chunks and each chunk has a
corresponding row in the compact forwarding table. This row holds the amount of
live bytes in the preceding chunks, and a live map for all the objects on the chunk.
The green line and arrow shows an object to be relocated and its corresponding
row in the forwarding table. The red arrow shows what chunks the accumulated
live bytes summarize. To calculate the forwarding address, we only need to look at
the row pointed to by the green allow as all preceding rows are summarizes by the
live bytes. As depicted by the yellow arrow, the live map covers the chunk where
the object we are relocating resides. Thus, in addition to the live bytes, we must
search this map to calculate the object’s offset into the chunk.

3.4 Putting It All Together

Let us construct a compact table where the first column is accumulated live bytes
and the second column is a live map, where each bit represents a word. For memory
efficiency and with regards to memory alignment, one entry fits in 8 bytes (64 bits)
Using 32 bits, each live map can thus describe 256 bytes in a page. The bit layout
for each entry is found in Figure 3.7. Each row is said to span a fragment of the page
and to be a compact entry. Then let the n:th row’s accumulated live bytes be the
amount of all live bytes of up to n −1 rows.

To find the amount of live bytes for preceding objects you would then find the
corresponding compact entry and then sum the accumulated live bytes and scan
the live map to find all living objects residing on the compact entry.

To be able to free the old page as soon as we have relocated all objects, the live
map is extended to not only store the start of the object, but also the end. Since we
only need to know the size of all preceding objects, storing the end bit of objects
spanning over the compact entry limit is not needed, because that implies that it is
the last object on the compact entry.

An example of how the compact table is populated with liveness information
and accumulated live bytes is given in Figures 3.8–3.10. Figure 3.8 depicts the
entries from an initialized state and then populating them with liveness informa-
tion such that accumulated live bytes calculation can begin. Additionally, this figure
also shows that the first entry for the accumulated live bytes is always zero since the
first entry has no previous entries to refer to. Figures 3.9–3.10 steps through each

22

DESIGN OF A COMPRESSED FORWARDING TABLE

entry and exemplifies how accumulated live bytes are calculated. A third column,
address range, is added in the figures to help a human to read it, but it is not needed
for the implementation. This column represents what addresses the live map for
that particular row is spanning.

Let us show the use of these tables through and example. Let’s say we want
to calculate the forwarding address of an object living on address 0x188, in Fig-
ure 3.11a and that the start address of the new page is 0x2000000. This object
would then correspond to the blue bit in the figure. To get the new address for the
object at 0x188 you would therefore sum the following in Figure 3.11b.

3.5 Structural Code Comparison With the Original Solu-
tion

ZGC stores forwarding information in a global lookup table,ZForwardingTable.
Each page selected for relocation would have a corresponding ZForwarding
entry in the global ZForwardingTable. Furhter, each ZForwarding has as
many entries as needed for each relocated object, stored using ZForwarding-
Entry in a consecutive array. This is described in more detail in Section 2.5.2.

To depart as little as possible from the existing structure of the code, forward-
ing information in our implementation of the design exists at three different levels.
There is a global lookup table,ZCompactForwardingTablewith aZCompact-
Forwarding for each page that has been selected for relocation. ZCompact-
Forwarding stores all per-page information needed for relocation and a pointer
to the array containing ZCompactForwardingEntry. Fig. 3.12 shows these
designs back to back.

3.6 Pre-Committing Memory During Initialization

While it is obvious that ZCompactForwarding should store the page address of
the selected page for relocation as the old address, destination addresses for new
page(s) is more tricky. To minimize fragmentation, objects on old pages should
be relocated to new pages without creating new fragmentation. Recall that the ori-
ginal ZGC implementation reduces fragmentation after relocation, so this behavior
should be kept. Increasing fragmentation increases the risk of out-of-memory er-
rors despite available memory. This is due to the bump pointer allocation scheme
used in ZGC. During initialization, the live map is traversed when it is transcribed
into each ZCompactForwardingEntry, as a result this makes it an easy point
to calculate if objects would fit into the new page. To simplify calculation and as-
signment of new page(s), these are allocated and pre-comitted during initialization.
All ZCompactForwarding have their page addresses and accompanying offset
installed succeeding the initialization.

3.7 The Impact of the New Design

3.7.1 Upper Bound of Memory Overhead

As we have already stated, the memory overhead of the new design will never ex-
ceed 3.2%. Here is how we have arrived as this number2 2) The large memory cost comes

from all entries. It should be noted
that the size of the additional meta
data that is needed once per page
is omitted from this calculation. It
is assumed to not be more than
1KB which would increase the
overhead cost by 0.0005% and is
thus negligible.

as the maximal overhead.

23

DESIGN OF A COMPRESSED FORWARDING TABLE

Let S be the size of a chunk in bytes, and B be the number of bytes whose forward-
ing information is covered by one chunk. Note that both S and B are constant and
do not change e.g., with the page size, or number of relocated objects. Thus, the
memory overhead needed to store forwarding information is S/B . In our imple-
mentation, each chunk covers 256 bytes of the heap and the size of a chunk is 8
bytes (64 bits). This means that for the selected design parameters the following
memory overhead is:

8

256
= 3.125%

Naturally, if only 10% of all pages of the heap are relocated, we only need forward-
ing information for one tenth of the heap, meaning that the effective overhead is
0.3125%. § 3.7.2 describes how we used simulation to explore the effective overhead
before we had a proper implementation in place.

3.7.2 Approximating Effective Overhead through Simulation

We approximated the effective overhead or our design by inserting telemetry into
the source of an otherwise unmodified OpenJDK, adding only 20 lines of code. All
(small) objects in the relocation set times the size of compact entries and the size of
the forwarding entries is logged as can be seen in Figure 3.15. Medium sized objects
were omitted since they would be very few (if any), in the selected benchmarks. We
run out instrumented OpenJDK on two of the DaCapo benchmarks (h2 and trade-
beans) and the synthetic worst case scenario called BigRamTester33) Source code available as an

attachment from https:
//bugs.openjdk.java.net/

browse/JDK-8152438.

. Fig. 3.13 and
Fig. 3.14 summary the simulation and show that the new memory overhead var-
ies less, with regards to maximum memory usage and the memory overhead is
significantly less in applications that do a lot of relocation (BigRamTester). Further-
more, while the upper limit for the memory usage of the new design is found to
be 3.2%, the simulations shows that for BigRamTester and h2 the memory usage is
significantly lower than that, 2.6% and 1.2% respectively.

24

https://bugs.openjdk.java.net/browse/JDK-8152438
https://bugs.openjdk.java.net/browse/JDK-8152438
https://bugs.openjdk.java.net/browse/JDK-8152438

DESIGN OF A COMPRESSED FORWARDING TABLE

* 63-63 (1-bit) Copied Flag

|

+-+----------------------------------+-----------------------------------+

|1|1111111 11111111 11111111 11111111|11111111 11111111 11111111 11111111|

+-+----------------------------------+-----------------------------------+

 | |

 | |

 | * 31-0 Live Bit Map (32-bits)

 |

 * 62-32 Amount of Live Bytes (31-bits)

Figure 3.7: Bit layout for a compact entry.

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 – 0xFF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x100 – 0x1FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x200 – 0x2FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x300 – 0x3FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x400 – 0x4FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x500 – 0x5FF
...
0 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF – 0x1FFFFF

(a) Starts with uininitalized compact entries

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF

0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF

0 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF

0 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF

0 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF
...
0 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(b) Copying liveness and size information into the live map. Green bit means that an
object that is live starts here and orange means that the object ends on this address.

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF

0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF
0 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF
...
0 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(c) The accumulated live bytes is always 0 for the first row, since there are no previous
rows.

Figure 3.8: How the compact entries are filled step-by-step. (a)
We go from an uninitialized state, to copying liveness information and begins
calculating the accumulated live bytes.

25

DESIGN OF A COMPRESSED FORWARDING TABLE

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF

0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF

0 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF
0 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF
...
0 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(a) Accumulated live bytes is updated to 0 since previous accumulated live bytes is 0 and
the size of all living objects on the previous compact entry was 0.

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF
0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF

128 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF

0 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF
0 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF
...
0 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(b) Accumulated live bytes is updated to 128 since previous accumulated live bytes is 0
and the size of all living objects on the previous compact entry was 128.

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF
0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF

128 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF

128 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF

0 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF
0 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF
...
0 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(c) Accumulated live bytes is updated to 128 since previous accumulated live bytes is 128
and the size of all living objects on the previous compact entry was 0.

Figure 3.9: How the compact entries are filled step-by-step. (b)
We continue to calculate accumulated live bytes.

26

DESIGN OF A COMPRESSED FORWARDING TABLE

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF
0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF
128 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF
128 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF

128 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF

0 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF
...
0 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(a) Accumulated live bytes is updated to 128 since previous accumulated live bytes is 128
and the size of all living objects on the previous compact entry was 0.

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF
0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF
128 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF
128 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF
128 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF

256 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF

...
0 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(b) Accumulated live bytes is updated to 256 since previous accumulated live bytes is 128
and the size of all living objects on the previous compact entry was 128.

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF
0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF
128 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF
128 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF
128 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF
256 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF

...

256 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(c) Final result. Last entry of accumualted live bytes is still 256 bytes since there were no
more living objects on this page.

Figure 3.10: How the compact entries are filled step-by-step. (c)
The accumulated live bytes is calculated for all entries.

27

DESIGN OF A COMPRESSED FORWARDING TABLE

Accumulated
live bytes

Live map (Address range)

0 0000 0000 0000 0000 0000 0000 0000 0000 0x0 - 0xFF

0 0001 1000 0000 0000 1000 0000 0000 0100 0x100 - 0x1FF

128 0000 0000 0000 0000 0000 0000 0000 0000 0x200 - 0x2FF
128 0000 0000 0000 0000 0000 0000 0000 0000 0x300 - 0x3FF
128 0011 0010 0000 0000 0001 0000 0000 0000 0x400 - 0x4FF
256 0000 0000 0000 0000 0000 0000 0000 0000 0x500 - 0x5FF

...
256 0000 0000 0000 0000 0000 0000 0000 0000 0x1FFEFF - 0x1FFFFF

(a) Example of compact forwarding entries. The live map should be read from left to right.

Address of the object starting at the blue bit: start address of the new page + ac-
cumulated live bytes at row 2 + the size of all preceding objects on that compact
entry

=
0x2000000+0x0+0x10=0x2000010

(b) Example of how an address can be calculated from the compact forwarding table

Figure 3.11: Example of how an address can be calculated from the compact
forwarding table

28

DESIGN OF A COMPRESSED FORWARDING TABLE

ZForwardingTable
ZForwarding

ZPage(old)

ZForwardingEntry

From Index To Offset

0 0xE00000

16 0xE00010

40 0x2000320

192 0xE03200

... ...

320 0x2000FA0

Populated

1

1

1

1

...

1

}round_up_power_of_2(

 page->live_objects() * 2

)

(a) Forwarding table. Forwaring information is stored per object level. The amount of
entires can become large since it is multiplied by two with the number of live objects and
rounded up to the nearest power of two.

ZCompactForwardingTable
ZCompactForwarding

ZPage(old) ZPage(new)

ZCompactForwardingEntry

Live Bytes Live Map

0 0100...0000

128 0000...0000

128 0001...0000

192 0000...0000

... ...

320 0000...0000

Copied

1

0

0

0

0

0

} page size

256

(b) Dividing page into compact entries. Forwarding information is stored per page level.
The amount of entries is constant with regards to the page size.

Figure 3.12: Overview of the original and new forwarding information scheme.
The arrow indicates a pointer.

29

DESIGN OF A COMPRESSED FORWARDING TABLE

10 20 30 40 50 60 70

0
5

1
0

1
5

2
0

2
5

3
0

3
5

BigRamTester

GC Round

R
e
lo

c
a
ti
o
n
 o

ve
rh

e
a
d
 (

%
 o

f
h
e
a
p
 s

iz
e
)

ZGC

New design

Figure 3.13: Memory overhead in ZGC vs the new design in BigRamTester. A peak
value for the memory overhead for ZGC is obsereved to be 35% vs. 2.6% for the
new design.

20 40 60 80

0
1

2
3

4

h2

GC Round

R
e
lo

c
a
ti
o
n
 o

ve
rh

e
a
d
 (

%
 o

f
h
e
a
p
 s

iz
e
)

ZGC

New design

Figure 3.14: Memory overhead in ZGC vs the new design in h2. A peak value for
the memory overhead for ZGC is obsereved to be 4.5% vs. 1.2% for the new design.

30

DESIGN OF A COMPRESSED FORWARDING TABLE

void ZRelocationSet::setup_relocation_set(ZPage* const* small,
size_t nsmall) {
size_t count_zforwardingentry = 0;

// Setup small pages
for (size_t i = 0; i < nsmall; i++) {
_forwardings[j++] = ZForwarding::create(group1[i],
&count_zforwardingentry);

}

size_t zforwarding =
count_zforwardingentry * sizeof(ZForwardingEntry);

size_t zcompactforwarding =
nsmall * 8192 * sizeof(ZCompactForwardingEntry);

// A small page has 8192 entries in the new design
log_info(gc)("Total allocated ZForwardingEntry size: "
SIZE_FORMAT, zforwarding);

log_info(gc)("Total allocated ZCompactForwardingEntry size: "
SIZE_FORMAT, zcompactforwarding);

}

ZForwarding* ZForwarding::create(ZPage* page,
size_t* count_zforwardingentry) {
const size_t nentries =
round_up_power_of_2(page->live_objects() * 2);
// ZGC rounds to a power of two for
// computational efficency

*count_zforwardingentry = nentries + *count_zforwardingentry;
return new Array<ZForwarding(page), 1, ZForwardingEntry, nentries>;

}

Figure 3.15: Pseudo code of added telemetry for simulating the new design.

31

DESIGN OF A COMPRESSED FORWARDING TABLE

32

Chapter 4

Evaluation Methodology

Optimizations typically involves a memory–calculation trade-off. A classic example
of this is memoization — keeping track of results of applications to allow recurring
applications to be resolved in constant-time, at the additional cost of storing a
map from arguments to results in memory [20], for each function. ZGC, Shenan-
doah and ART rely on storing forwarding information in a map-like fashion for
fast lookup. In ZGC, forwarding information is stored in a map data structure in a
contiguous address space, whereas in Shenandoah and ART, the map is distributed
over pages selected for evacuation, with each entry inscribed in the space occupied
by relocated objects.

By trading memory for some additional calculation-time, our approach is to
implement a “compact forwarding table” which achieves low overhead by keeping
the minimal information around that allows each lookup to calculate the unique
forwarding address for each live object. By placing this information in an auxiliary
data structure, we avoid the floating garbage problem of Shenandoah and ART due
to delaying recycling of entire memory pages. Since we keep information to cal-
culate forwarding addresses, instead of simply recording them, the memory costs
does not increase with the number of relocated objects (although with the number
of pages), avoiding the pathological case of ZGC.

When comparing garbage collectors, there are, on a high level, three important
aspects to consider: pause time, space and throughput [1]. Pause times in ZGC are
only effected by the root set and the new design does not introduce any new roots.
If we generalize from our simulations (see Figures 3.13–3.14), we know that the
memory overhead is stable and low, since it is independent from the amount of
living objects. Usually when you give up memory, the computational cost increase.
This means that it is important to understand what impact the new design has on
the throughput.

We expect compressed forwarding information to lead to some performance
degradation, since we are now calculating addresses on-the-fly. However, systems
such as OpenJDK are complex, and our expectation may be incorrect. Furthermore,
the amount of performance regression is hard to gague. To understand the per-
formance implications, we can measure applications’ execution times/benchmark
scores. A goal guided by the author’s intuition is to not have a more than 5% re-
gression with respect to execution time or throughput related benchmark scores.
Moreover, any change related to timing could change how the garbage collector
behaves. This means that the size of the relocation set could change. To get a better
understanding how the changes to the forwarding information effects OpenJDK

33

EVALUATION METHODOLOGY

with ZGC, it is of interest to also measure the duration of the relocation phase and
the size of the relocation set.

4.1 Measuring Throughput

To measure the application throughput, SPECjbb2015 and the DaCapo benchmark
suite are used. SPECjbb2015 measures this using a internally defined benchmark
score jOPS and the DaCapo suite measures application throughput in execution
time. Both are commonly used in the research community when benchmarking
JVM performance. For short-lived benchmarks in the DaCapo benchmark suite,
the method to retrieve statistically significant results is described in Section 4.1.5.

The synthetic worst-case scenario, BigRamTester11) Source code available as an
attachment from https:

//bugs.openjdk.java.net/
browse/JDK-8152438.

, presented first in Chapter 1
and later in Chapter 3 is important to guage the differences in the memory usage
of the different solutions. BigRamTester however, does not perform any “meaning-
ful” work. It essentially creates a big linked list and subsequently removes random
elements from it (using several threads) and keeps doing this forever. So any results
from these measurements would have minimal general applicability. For two reas-
ons, we do not measure execution time for BigRamTester since it would provide
little value into answering the question on what the performance impact would be
of the new design.

4.1.1 DaCapo Suite

The DaCapo benchmark suite is a collection of carefully selected benchmarks to be
used by the community that develops Java to benchmark the language implement-
ation [21]. A benchmark is added to the suite if it is considered to offer a unique as-
pect with regards to measuring performance aspects of the JVM. Table 4.1 contains
a list from the documentation from DaCapo, briefly describing each benchmark
that were selected for benchmarking. We use DaCapo-9.12-bach-MR1, which is
the latest stable release at the time of writing this. Since most of the benchmarks
are rather short-lived, the method described in Section 4.1.5 needs to be used to
retrieve statistically significant results. The benchmarks tradebeans and tradesoap
could not run on the author’s system due to application errors which we believe
are caused by a concurrency problem that is reported in the issue tracking system
at Github2

2) https://github.com/
dacapobench/

dacapobench/issues/99

. The benchmarks eclipse and batik could not run on newer JDKs due to
dependencies issues, which is also reported in the issue tracking system at Github3

3) https://github.com/
dacapobench/

dacapobench/issues/175
.

Finally, while tomcat did run, we were never able to get a correct validation of the
benchmark, neither with original OpenJDK nor using our new implementation, so
it also had to be excluded.

The latest stable release of DaCapo is 11 years old (2009), but is still used in
the community and is, therefore, included as to provide credibility and ability to
compare results against other garbage collectors. There exists a release candidate 4

4) last update 2019-06-17, Git
commit hash 309e1fa

that adds new benchmarks, offering additional unique aspects for benchmarking.
The benchmark BioJava, a library for processing biological data 5

5) https://github.com/
biojava/biojava

, were selected
from these new additions. GraphChi is excluded due to time constraints and the
other ones are excluded since they were not able to run on the latest version of
OpenJDK.

34

https://bugs.openjdk.java.net/browse/JDK-8152438
https://bugs.openjdk.java.net/browse/JDK-8152438
https://bugs.openjdk.java.net/browse/JDK-8152438
https://github.com/dacapobench/dacapobench/issues/99
https://github.com/dacapobench/dacapobench/issues/99
https://github.com/dacapobench/dacapobench/issues/99
https://github.com/dacapobench/dacapobench/issues/175
https://github.com/dacapobench/dacapobench/issues/175
https://github.com/dacapobench/dacapobench/issues/175
https://github.com/biojava/biojava
https://github.com/biojava/biojava

EVALUATION METHODOLOGY

avrora simulates a number of programs run on a grid of AVR microcontrollers
fop takes an XSL-FO file, parses it and formats it, generating a PDF file.
h2 executes a JDBCbench-like in-memory benchmark, executing a number of

transactions against a model of a banking application, replacing
the hsqldb benchmark

jython inteprets the pybench Python benchmark
luindex Uses lucene to indexes a set of documents; the works of Shakespeare and

the King James Bible
lusearch Uses lucene to do a text search of keywords over a corpus of data

comprising the works of Shakespeare and the King James Bible
pmd analyzes a set of Java classes for a range of source code problems
sunflow renders a set of images using ray tracing
xalan transforms XML documents into HTML

Table 4.1: Brief description of selected benchmarks in DaCapo.
Copied from the DaCapo manual6 6) http://dacapobench.

sourceforge.net/
benchmarks.html

.

4.1.2 SPECjbb2015

SPECjbb2015 is designed to evaluate the performance of Java business applications.
The benchmark is bound by CPU, memory and network I/O, but not disk I/O. There
is an option to execute the benchmark on more than one machine and then the
benchmark would be dependent on network I/O. For our purposes, it is sufficient to
measure on a single machine, since the garbage collector is not affected by network
I/O. In SPECjbb jargon this means that we run in composite mode (single JVM,
single host) [22]. The Java heap size is set to 100GB, as this is the minimum heap
size that SPECjbb2015 runs on, due to the pre-committing of memory described
in Section 3.6. One benchmark run is designed to take about 2 hours to complete
(regardless of what system is used) [22], therefore, there is be no need to simulate
long running behavior.

4.1.3 DaCapo Benchmark Configurations

The configurations to be used in simulating (explained in future Section 4.1.5)
long running applications can be found in Table 4.2. DaCapo provides up to three
sizes of workloads and all of these were utilized whenever possible. There is also
an option to configure how many iterations of the benchmark that should be ex-
ecuted within one application invocation. Since very short lived application have
less time in having the JIT to stabilize the performance, the acceptable stable
threshold needs be increased for those configurations. Neither SPECjbb or the syn-
thetic worst-case have any parameters to tune. They are sampled as many times as
needed in order to deduce a statistically significant result.

4.1.4 Inferring Confidence Intervals Using the Bootstrap Percentile
Method

When a set of observed execution times is collected, calculating a mean value is
often of interest. Using only the mean value to deduce conclusion might however
give rise to inference-myopia. The observed values may be vastly different, there-
fore, the mean value might be a poor reflection of data that have high variance. One

35

http://dacapobench.sourceforge.net/benchmarks.html
http://dacapobench.sourceforge.net/benchmarks.html
http://dacapobench.sourceforge.net/benchmarks.html

EVALUATION METHODOLOGY

Size Benchmark Iterations Use Last Data Points Stable Threshold Java Heap

Small avrora 100 50 3% 4GB
Large avrora 50 25 3% 4GB

– biojava 40 25 3% 6GB

Small fop 1500 100 3% 4GB

Small h2 100 50 10% 4GB
Large h2 50 25 3% 4GB
Huge h2 25 10 3% 6GB

Small jython 200 100 9% 4GB
Large jython 50 30 3% 4GB

Small luindex 100 20 10% 4GB

Small lusearch 300 30 5% 4GB
Large lusearch 100 20 3% 4GB

Small pmd 700 200 10% 4GB
Large pmd 300 30 10% 4GB

Small sunflow 700 50 10% 4GB
Large sunflow 50 10 10% 4GB

Small xalan 700 100 3% 4GB
Large xalan 100 20 3% 4GB

Table 4.2: How many data points to use were approximated by the author through
a quick sample to see if the resulting data would be likely to have sufficiently low
coefficient of variation. The stable threshold is configured to be as low as possible
while still resulting in sufficient aggregated data points.

36

EVALUATION METHODOLOGY

metric that might be even more useful (in conjunction with a mean value) is the
95% confidence interval. This gives an interval where any observed value is within
the 95% likelihood.

Since the distribution of the observed execution times is unknown, it makes it
more difficult to infer a 95% confidence interval (for the mean). If the underlying
data could be assumed to have a Gaussian distribution, then a 95% confidence
interval would be given by [−2σ,2σ], due to the definition of standard deviation
(σ) in a Gaussian distribution.

When the distribution is unknown, a non-parametric method can be used to ap-
proximate the confidence interval. One such method is the Percentile Method [23].
Assume M = m1,m2, ..,mk number of sets of observations Ok = o1,o2, ...,oq have
been recorded. Assume that q and k are not large enough to be able to directly
draw an conclusion about the 95% confidence interval. We can then simulate more
data (bootstrapping) for each set of observation by sampling Ok with replacement
x times, which can be referred to as a bootstrap sample B = b1,b2, ...,bn . So for an
example, b1 samples O1 x times, where x >> q . This should be performed for each
set of observation. Then the 95% confidence interval is inferred by [p2.5, p97.5] on B .
This method is used to infer the confidence intervals for all measurements. Each
bootstrap sample draws out each observation set 10 000 times, which is assumed
to be a large enough data set to draw statistical conclusions from.

4.1.5 Measuring Steady-State Performance in Java Applications us-
ing Short Lived Benchmarks

One of Java’s great strength is that you can write your code once and then it runs
on every system that supports the JVM. The machine can not directly run Java byte
code, but have to interpret it and interpreting code is a costly operation, so special
measures need to be taken in order to achieve acceptable performance [24].

A common pattern in programming is that the same function would be used
over and over again. Java takes advantage of this pattern by implementing a Just-In-
Time (JIT) compiler. The JIT compiler compiles and caches code that is frequently
executed. A JIT compiler gives a significant performance boost in interpreted lan-
guages [24]. So much that, in some cases, the performance of JIT compiled lan-
guages can be on par with compiled languages such as C/C++ [25, 26, 27]. However,
it takes a while before performance peaks, since the JIT compiler has to compile the
code and analyze what parts are executed often enough to be cached. As a result the
period after this point is called the steady-state. The performance of the steady-state
period exhibits less variation in its performance due to most JIT compilation has
already been performed. However, the performance during steady-state still has
some variability introduced by non-controllable sources such as thread scheduling.

When identifying steady-state there are two issues that need to be resolved.
First, long-running applications run typically on large data sets. Benchmarks simu-
late this by running the same benchmark within one VM invocation multiple times.
The first question that needs to be answered is, therefore, how many such itera-
tions are needed to achieve steady-state. Second, different VM invocations may
result in different levels of optimizations and therefore has varying steady-state
performance [28].

To address these issues, George et al. [28] propose the following guidelines
when benchmarking:

1. Consider p VM invocations, each VM invocation running at most q bench-

37

EVALUATION METHODOLOGY

mark iterations. Suppose that we want to retain k measurements per invoca-
tion.

2. For each VM invocation, i , determine the iterations si where steady-state per-
formance is reached, i.e., once the coefficient of variation of the k iterations
(si −k to si) falls below a preset threshold, say 0.01 or 0.02

3. For each VM invocation, compute the mean xi of the k benchmark iteration
under steady-state:

xi =
si∑

j=si−k
xi j

4. Compute the confidence interval for a given confidence level across the com-
puted means from the different VM invocations. The overall mean equals
x = ∑p

i=1 xi and the confidence interval is computed over the xi measure-
ments.

Step 2 approximates where the JIT compiler performance boosting have sta-
bilized. We are only interested in measuring differences in the garbage collector
algorithm. Finding the point where the JIT compiler have done most of its work
is, therefore, key in order to be able to compare results. Results might still have
high variance, due to factors we cannot control, such as thread scheduling from
the operating system, therefore, we should disregard any data point that have far
too great of coefficient of variation. In step 3–4 the selected data is aggregated in
order to be able to find a mean and a confidence interval.

4.2 Measuring Reallocation Work

To understand other impacts from the new design, we run a separate batch of
benchmarks with logging is enabled 77) This is enabled by supplying

-Xlog:gc+reloc to the JVM
during startup.

. It should be noted that no additional met-
rics have been inserted into the source code. The same machine used to measure
throughput is also used to measure reallocation work. Since logging might effect
performance data, it is important to not collect logging information at the same
time as performance measurements. From the log data, we can see the number
of garbage collection cycles that is performed and how much data that is moved
during the execution of the program.

4.3 Machines to Collect Data

Two machines are used to collect data simultaneously, machine A for the DaCapo
site and machine B for SPECjbb2015. The specification for each machine is found in
Table 4.3. OpenJDK is compiled using GCC 7.5.0 and the patch containing the new
implemenation is applied on top of commit from the release branch of OpenJDK
with id eccdd8e60399a4b0db77b94e77bb32381090a5c688) authored on 2020-02-12 .

38

EVALUATION METHODOLOGY

Machine Type OS Linux Kernel Version CPU CPUs Threads
Per
Core

Core Per
Sockets

CPU Attached To
Number Of Sock-
ets

Memory

A Native Ubuntu
18.04.4
LTS

4.15.0-99-generic Intel(R) Xeon(R)
CPU E5-2665 0 @
2.40GHz

32 2 8 2 32G

B Virtual
Machine
(VM-
Ware)

Ubuntu
18.04.3
LTS

4.15.0-96-generic Intel(R) Xeon(R)
CPU E5-2697 v2 @
2.70GHz

8 1 2 4 128G

Table 4.3: Machines used to collect data.

39

EVALUATION METHODOLOGY

40

Chapter 5

Results

5.1 SPECjbb2015

SPECjbb2015 has two throughput measurements, critical-jOPS and max-jOPS which
measures benchmark throughput in two distinct ways. Critical-jOPS measures
throughput under a response time constraint and max-jOPS measures maximal
throughput [22]. In Table 5.1 the results are presented and visualized in Figure A.1,
which shows that there is a significant difference between the new design and ZGC.
Both max-jOPS and critical-jOPS have a performance regression of 2% for the new
design.

Type N Mean (jOPS) Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

vanilla 91 9044 128 1.41% 0.00% 8991 9096
compact 91 8883 133 1.50% -1.78% 8829 8938

(a) max-jOPS
Type N Mean (jOPS) Standard Deviation Relative Standard Deviation Performance 95-CI Lower 95-CI Upper

vanilla 91 5509 76 1.37% 0.00% 5477 5539
compact 91 5385 72 1.33% -2.25% 5354 5414

(b) critical-jOPS

Table 5.1: SPECjbb2015 results.
A performance regression of 2% is seen for both max-jOPS and critical-jOPS.

5.2 DaCapo

The DaCapo results are presented in Table 5.2 and visualized in Figures A.3–A.12.
The results can be grouped into three categories: (1) no difference in execution time
performance1 1) Only results that have

non-overlapping confidence
interval should be considered to
have statistically significant
difference between means.

, (2) performance regression in execution time for the new solution,
(3) performance improvement in execution time for the new solution. No differ-
ence (1) in performance was observed in the following benchmarks: avrora_large,
biojava, h2_small, h2_large, luindex_small, lusearch_small, jython_small, pmd_small,
xalan_small, xalan_large. Performance regression in execution time for the new
solution was observed in benchmarks: avrora_small, h2_huge, lusearch_large, jython-
_large, pmd_large, sunflow_small, in the range of 0.93–3.76%. Performance im-
provements (3) in execution time was observed in fop_small, sunflow_large and

41

RESULTS

speed up was measured to 5.69%, respectively 22.42%.

Benchmark Type N Mean (ms)
Standard
Deviation

Relative Standard
Deviation

Performance CI Lower CI Upper

avrora_small vanilla 47 2021 12 0.61% 0.00% 2013 2028
avrora_small compact 88 2039 16 0.77% -0.93% 2031 2049
avrora_large vanilla 30 111106 1227 1.10% 0.00% 110296 111648
avrora_large compact 30 110993 2014 1.81% 0.10% 109614 111842

biojava vanilla 31 28884 875 3.03% 0.00% 28363 29363
biojava compact 32 28956 846 2.92% -0.25% 28435 29407

fop_small vanilla 34 56 1 1.79% 0.00% 55 56
fop_small compact 50 53 1 1.68% 5.69% 52 53

h2_small vanilla 45 1118 17 1.56% 0.00% 1107 1128
h2_small compact 50 1098 20 1.80% 1.77% 1087 1109
h2_large vanilla 23 65436 1048 1.60% 0.00% 64783 65991
h2_large compact 23 65737 1069 1.63% -0.46% 65143 66369
h2_huge vanilla 20 580297 9441 1.63% 0.00% 574809 585738
h2_huge compact 20 592139 9772 1.65% -2.04% 586628 597638

luindex_small vanilla 24 115 4 3.26% 0.00% 112 117
luindex_small compact 25 114 4 3.47% 0.53% 112 116

lusearch_small vanilla 13 72 3 3.66% 0.00% 70 73
lusearch_small compact 25 75 3 4.45% -3.70% 72 77
lusearch_large vanilla 13 389 9 2.43% 0.00% 383 394
lusearch_large compact 25 403 9 2.35% -3.76% 395 407

jython_small vanilla 20 218 6 2.82% 0.00% 214 221
jython_small compact 50 219 6 2.73% -0.43% 215 223
jython_large vanilla 21 12890 136 1.06% 0.00% 12811 12968
jython_large compact 21 13109 121 0.92% -1.70% 13039 13179

pmd_small vanilla 37 19 0 0.98% 0.00% 19 19
pmd_small compact 50 19 1 3.18% 0.82% 18 19
pmd_large vanilla 50 2739 29 1.04% 0.00% 2722 2755
pmd_large compact 50 2801 25 0.91% -2.24% 2786 2815

sunflow_small vanilla 7 344 11 3.18% 0.00% 338 350
sunflow_small compact 50 360 6 1.64% -4.69% 354 362
sunflow_large vanilla 50 1984 35 1.76% 0.00% 1964 2005
sunflow_large compact 50 1539 13 0.83% 22.42% 1532 1547

xalan_small vanilla 27 56 1 1.57% 0.00% 55 56
xalan_small compact 50 57 2 3.17% -1.36% 55 57
xalan_large vanilla 42 2884 75 2.61% 0.00% 2840 2928
xalan_large compact 50 2839 88 3.11% 1.56% 2794 2887

Table 5.2: DaCapo results.
No difference in performance was observed in: {avrora_large, biojava, h2_small,
h2_large, luindex_small, lusearch_small, jython_small, pmd_small, xalan_small,
xalan_large}. Performance regression in execution time for: {avrora_small,
h2_huge, lusearch_large, jython_large, pmd_large, sunflow_small}, in the range of
0.93–3.76%. Performance improvements in execution time in: {fop_small,
sunflow_large}.

5.3 Behavioral Impact

Tables 5.3–5.5 show that for a majority of the benchmarks less data (in MB) is re-
located using the new design. This was observed in the following benchmarks:
biojava, fop_small, h2_small, h2_large, h2_huge, jython_large, luindex_small, lusearch_small,
luindex_large, pmd_small, pmd_large, sunflow_small, xalan_small, and xalan_large.
In jython_small and sunflow_large the opposite was observed, where more MB is
relocated for the new design, furthermore in avrora_small and avrora_large no dif-
ference in amount of relocated MB was observed. Table 5.3–Table 5.5 show that

42

RESULTS

a majority of the benchmarks have no difference in the amount of garbage col-
lection cycles. This was observed in the following benchmarks: avrora_small, av-
rora_large, biojava, fop_small, h2_small, jython_small, jython_large, luindex_small,
lusearch_small, luindex_large, pmd_small, pmd_large, sunflow_small, xalan_small,
and xalan_large. In h2_large and h2_huge we can observe that fewer garbage col-
lection cycles is performed with the new design and in sunflow_large more cycles
is performed with the new design.

Measurement Type N Mean
Standard
Deviation

Relative Standard
Deviation

CI Lower CI Upper

Sum Relocated MB vanilla 199 75405 (MB) 4045 5.36% 73098 77816
Sum Relocated MB compact 199 72902 (MB) 3688 5.06% 70825 75113
GC Rounds vanilla 199 103 (rounds) 5 5.31% 99 105
GC Rounds compact 199 103 (rounds) 5 4.97% 99 105

Table 5.3: Results of measuring garbage collection work in SPECjbb2015.
While the mean of sum relocated MB is lower for the new design, the confidence
intervals overlap so no statistical conclusion can be drawn.

43

RESULTS

Benchmark Type Measurement N Mean Standard Relative CI CI
Deviation Standard Deviation Lower Upper

avrora_small Sum Relocated MB vanilla 60 203 (MB) 26 12.57% 200 218
avrora_small Sum Relocated MB compact 60 200 (MB) 0 0.00% 200 200
avrora_small GC Cycles compact 60 100 (cycles) 0 0.00% 100 100
avrora_small GC Cycles compact 60 100 (cycles) 0 0.00% 100 100
avrora_large Sum Relocated MB vanilla 60 103 (MB) 18 17.17% 100 117
avrora_large Sum Relocated MB compact 60 100 (MB) 0 0.00% 100 100
avrora_large GC Cycles vanilla 60 50 (cycles) 0 0.00% 50 50
avrora_large GC Cycles compact 60 50 (cycles) 0 0.00% 50 50

biojava Sum Relocated MB vanilla 60 14176 (MB) 46 0.32% 14148 14201
biojava Sum Relocated MB compact 60 13729 (MB) 31 0.23% 13711 13746
biojava GC Cycles vanilla 60 202 (cycles) 0 0.00% 202 202
biojava GC Cycles compact 60 202 (cycles) 0 0.13% 202 202

fop_small Sum Relocated MB vanilla 60 11098 (MB) 920 8.29% 10518 11580
fop_small Sum Relocated MB compact 60 3006 (MB) 1 0.02% 3005 3006
fop_small GC Cycles vanilla 60 1500 (cycles) 0 0.00% 1500 1500
fop_small GC Cycles compact 60 1500 (cycles) 0 0.00% 1500 1500

h2_small Sum Relocated MB vanilla 60 1253 (MB) 105 8.36% 1189 1314
h2_small Sum Relocated MB compact 60 336 (MB) 18 5.45% 325 347
h2_small GC Cycles vanilla 60 101 (cycles) 0 0.00% 101 101
h2_small GC Cycles compact 60 101 (cycles) 0 0.00% 101 101
h2_large Sum Relocated MB vanilla 60 6831 (MB) 333 4.87% 6631 7020
h2_large Sum Relocated MB compact 60 5439 (MB) 283 5.20% 5273 5601
h2_large GC Cycles vanilla 60 166 (cycles) 11 6.79% 159 172
h2_large GC Cycles compact 60 130 (cycles) 9 7.23% 124 135
h2_huge Sum Relocated MB vanilla 40 27793 (MB) 593 2.13% 27436 28125
h2_huge Sum Relocated MB compact 40 26289 (MB) 478 1.82% 26017 26576
h2_huge GC Cycles vanilla 40 239 (cycles) 11 4.60% 232 244
h2_huge GC Cycles compact 40 221 (cycles) 10 4.50% 215 226

jython_small Sum Relocated MB vanilla 60 4006 (MB) 0 0.01% 4005 4006
jython_small Sum Relocated MB compact 60 6774 (MB) 0 0.00% 6774 6774
jython_small GC Cycles vanilla 60 201 (cycles) 0 0.00% 201 201
jython_small GC Cycles compact 60 201 (cycles) 0 0.00% 201 201
jython_large Sum Relocated MB vanilla 60 2250 (MB) 177 7.88% 2156 2362
jython_large Sum Relocated MB compact 60 2121 (MB) 22 1.02% 2108 2133
jython_large GC Cycles vanilla 60 227 (cycles) 11 4.69% 221 233
jython_large GC Cycles compact 60 235 (cycles) 13 5.36% 227 242

luindex_small Sum Relocated MB vanilla 60 398 (MB) 0 0.00% 398 398
luindex_small Sum Relocated MB compact 60 200 (MB) 1 0.28% 200 200
luindex_small GC Cycles vanilla 60 100 (cycles) 0 0.00% 100 100
luindex_small GC Cycles compact 60 100 (cycles) 0 0.00% 100 100

lusearch_small Sum Relocated MB vanilla 60 891 (MB) 298 33.48% 712 1087
lusearch_small Sum Relocated MB compact 60 600 (MB) 0 0.00% 600 600
lusearch_small GC Cycles vanilla 60 300 (cycles) 0 0.00% 300 300
lusearch_small GC Cycles compact 60 300 (cycles) 0 0.00% 300 300
lusearch_large Sum Relocated MB vanilla 60 1700 (MB) 48 2.83% 1670 1725
lusearch_large Sum Relocated MB compact 60 1379 (MB) 26 1.92% 1362 1393
lusearch_large GC Cycles vanilla 60 203 (cycles) 1 0.70% 202 204
lusearch_large GC Cycles compact 60 203 (cycles) 1 0.72% 202 203

Table 5.4: Results of measuring garbage collection work in the DaCapo suite (a).

44

RESULTS

Benchmark Type Measurement N Mean Standard Relative CI CI
Deviation Standard Deviation Lower Upper

pmd_small Sum Relocated MB vanilla 60 2798 (MB) 0 0.00% 2798 2798
pmd_small Sum Relocated MB compact 60 1402 (MB) 0 0.02% 1401 1402
pmd_small GC Cycles vanilla 60 700 (cycles) 0 0.00% 700 700
pmd_small GC Cycles compact 60 700 (cycles) 0 0.00% 700 700
pmd_large Sum Relocated MB vanilla 60 880 (MB) 11 1.28% 872 883
pmd_large Sum Relocated MB compact 60 491 (MB) 5 1.08% 487 493
pmd_large GC Cycles vanilla 60 102 (cycles) 0 0.00% 102 102
pmd_large GC Cycles compact 60 102 (cycles) 0 0.00% 102 102

sunflow_small Sum Relocated MB vanilla 60 1200 (MB) 0 0.00% 1200 1200
sunflow_small Sum Relocated MB compact 60 602 (MB) 0 0.00% 602 602
sunflow_small GC Cycles vanilla 60 300 (cycles) 0 0.00% 300 300
sunflow_small GC Cycles compact 60 300 (cycles) 0 0.00% 300 300
sunflow_large Sum Relocated MB vanilla 60 2956 (MB) 135 4.58% 2876 3039
sunflow_large Sum Relocated MB compact 60 3403 (MB) 79 2.32% 3357 3449
sunflow_large GC Cycles vanilla 60 197 (cycles) 5 2.48% 194 199
sunflow_large GC Cycles compact 60 248 (cycles) 6 2.24% 244 251

xalan_small Sum Relocated MB vanilla 60 2777 (MB) 175 6.29% 2676 2800
xalan_small Sum Relocated MB compact 60 1402 (MB) 0 0.00% 1402 1402
xalan_small GC Cycles vanilla 60 700 (cycles) 0 0.00% 700 700
xalan_small GC Cycles compact 60 700 (cycles) 0 0.00% 700 700
xalan_large Sum Relocated MB vanilla 60 6751 (MB) 55 0.82% 6717 6783
xalan_large Sum Relocated MB compact 60 5845 (MB) 23 0.40% 5831 5858
xalan_large GC Cycles vanilla 60 503 (cycles) 1 0.24% 502 504
xalan_large GC Cycles compact 60 503 (cycles) 1 0.24% 502 504

Table 5.5: Results of measuring garbage collection work in the DaCapo suite (b).

45

RESULTS

46

Chapter 6

Conclusions

Moving garbage collectors that perform concurrent relocation, need to store for-
warding information. In ZGC, the memory overhead due to forwarding information
may become as large as the application heap itself. In other collectors, like Shen-
andoah and ART, the way forwarding information is stored delays the recycling of
old pages. This thesis shows it is possible to design and implement a compressed
forwarding table with a guaranteed upper limit of< 3.2% memory overhead for stor-
ing forwarding information. This design adds an additional computational cost for
lookups of forwarding addresses. Several benchmarks were used to understand the
effects of the compact forwarding table design on application throughput. Eval-
uating the computational impact, three groups of statistically significant results
is found: performance regression in the range of 1–3% (SPECjbb2015 and 6 Da-
Capo configurations), no difference (10 DaCapo configurations), performance im-
provements (2 DaCapo configurations). The goal of a maximum 5% performance
regression is thus considered to be fulfilled.

The new implementation requires 961 lines of code, which is only 68 more lines
compared to the original solution. While lines of code is generally not a good metric
of code quality, it is still something worth to be considered in a large code base such
as OpenJDK.

As future work, the execution time can be improved by optimizing the scanning
of the live map. The current implementation will scan for liveness bit by bit in a loop.
Most of the bits in the live map will consist of zeros. There exists a special machine
instruction that will count the number of zeroes [29] and utilizing this machine
instruction should, therefore, be able to significantly reduce the computational
cost, since most iterations in the scanning of the live map can be eliminated.

There is one major shortcut in the current implementation which hinders its
adoption into OpenJDK. As mentioned in mentioned in Section 3.6, all memory
that is needed for relocation is committed already at the setup of the compact for-
warding tables. This pre-committing of memory leads to a need for much larger
heaps than with the original solution. This is done because the authored focused
on having a correct prototype implementation completed in time and this simpli-
fication saved a lot of time. Postponing committing memory until the relocation
actually takes places is supported by the design presented in this thesis.

At first glance, the design should be applicable in other garbage collectors than
ZGC, like Shenandoah and ART. Inspecting Shenandoah shows that it could adopt
the forwarding table with some additional changes. Currently Shenandoah marks
regions of virtual memory to be relocated. Such a region cannot be free’d until

47

CONCLUSIONS

every object in that region is relocated and all pointers are updated to the new
location. Shenandoah stores the new address in the old objects in the marked
region, meaning that they have the worst-case scenario of ZGC (100% memory
overhead) with regards to memory overhead per page.

Even though adopting a forwarding table would change Shenandoah so that
forward addresses are not stored in old relocated objects, it would still not allow
freeing the memory, since the virtual address is used to signify that this object have
been relocated. To get any memory benefits, virtual and physical memory needs to
be decoupled. As soon as an object have been relocated the physical memory could
be reused, but the virtual memory may not be reused until next garbage collection
cycle. Decoupling physical memory from virtual memory in a garbage collector has
been done before, notably in C4 [30]. In order to achieve good performance with
decoupled virtual and physical memory C4 had to create a custom Linux kernel.
Substantial work may therefore have to been done for Shenandoah to be able to
adopt this design, but the performance implications is not clear.

Another future work would be to investigate the differences in performance
between our implementation and Compressor. As mentioned previously in Chapter 2,
Compressor is a garbage collector that on a high level has design that resembles
our with regards to calculating forwarding addresses.

48

Bibliography

[1] Hosking A, Jones R, Moss E. The Garbage Collection Handbook. Chapman
and Hall/CRC; 2016.

[2] Oracle Corporation. openjdk/jdk: Read-only mir-
ror of https://hg.openjdk.java.net/jdk/jdk (commit: ec-
cdd8e60399a4b0db77b94e77bb32381090a5c6);. Available from:
https://github.com/openjdk/jdk.

[3] Dijkstra EW, Lamport L, Martin AJ, Scholten CS, Steffens EF. On-the-fly
garbage collection: An exercise in cooperation. Communications of the ACM.
1978;21(11):966–975.

[4] Silberschatz A, Galvin PB, Gagne G. Operating System Concepts. 9th ed. Wiley
Publishing; 2012.

[5] Rovner P. On Adding Garbage Collection and Runtime Types to a Strongly-
Typed, Statically-Checked, Concurrent Language. Xerox Corporation, Palo
Alto Research Center; 1985.

[6] Mobile Operating System Market Share Worldwide;. Available from:
https://gs.statcounter.com/os-market-share/mobile/
worldwide.

[7] Android 8.0 ART Improvements : Android Open Source Project;. Available
from: https://source.android.com/devices/tech/dalvik/
improvements.

[8] Android 10 for Developers : Android Developers;. Available from: https:
//developer.android.com/about/versions/10/highlights.

[9] Oracle JDK vs OpenJDK and Java JDK Development Pro-
cess;. Available from: https://javapapers.com/java/
oracle-jdk-vs-openjdk-and-java-jdk-development-process/.

[10] How to contribute;. Available from: https://openjdk.java.net/
contribute/.

[11] Types of Java Garbage Collectors;. Available from: https://javapapers.
com/java/types-of-java-garbage-collectors.

[12] Schatzl T. JEP 363: Remove the Concurrent Mark Sweep (CMS) Garbage Col-
lector; 2019. Accessed: 2019-04-22. https://openjdk.java.net/
jeps/363.

49

https://github.com/openjdk/jdk
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://source.android.com/devices/tech/dalvik/improvements
https://source.android.com/devices/tech/dalvik/improvements
https://developer.android.com/about/versions/10/highlights
https://developer.android.com/about/versions/10/highlights
https://javapapers.com/java/oracle-jdk-vs-openjdk-and-java-jdk-development-process/
https://javapapers.com/java/oracle-jdk-vs-openjdk-and-java-jdk-development-process/
https://openjdk.java.net/contribute/
https://openjdk.java.net/contribute/
https://javapapers.com/java/types-of-java-garbage-collectors
https://javapapers.com/java/types-of-java-garbage-collectors
https://openjdk.java.net/jeps/363
https://openjdk.java.net/jeps/363

BIBLIOGRAPHY

[13] Lidén P, Karlsson S. JEP 333: ZGC: A Scalable Low-Latency Garbage Collector;
2018. Accessed: 2019-04-05. http://openjdk.java.net/jeps/333.

[14] Flood CH, Kennke R, Dinn A, Haley A, Westrelin R. Shenandoah: An open-
source concurrent compacting garbage collector for OpenJDK. In: Proceed-
ings of the 13th International Conference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Machines, Languages, and Tools; 2016.
p. 1–9.

[15] Yang AM, Österlund E, Wrigstad T. Improving Program Locality in the GC
Using Hotness. In: Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2020. New York,
NY, USA: Association for Computing Machinery; 2020. p. 301–313. Available
from: https://doi.org/10.1145/3385412.3385977.

[16] Kocher P, Horn J, Fogh A, Genkin D, Gruss D, Haas W, et al. Spectre attacks:
Exploiting speculative execution. In: 2019 IEEE Symposium on Security and
Privacy (SP). IEEE; 2019. p. 1–19.

[17] Gabbay F, Mendelson A. Speculative execution based on value prediction.
Citeseer; 1996.

[18] Yang AM, Österlund E, Wilhelmsson J, Nyblom H, Wrigstad T. ThinGC: Com-
plete Isolation with Marginal Overhead. In: Proceedings of the 2020 ACM
SIGPLAN International Symposium on Memory Management. ISMM 2020.
New York, NY, USA: Association for Computing Machinery; 2020. p. 74–86.
Available from: https://doi.org/10.1145/3381898.3397213.

[19] Kermany H, Petrank E. The Compressor: concurrent, incremental, and par-
allel compaction. In: Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation; 2006. p. 354–363.

[20] Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. MIT
press; 2009.

[21] Blackburn SM, Garner R, Hoffman C, Khan AM, McKinley KS, Bentzur R, et al.
The DaCapo Benchmarks: Java Benchmarking Development and Analysis.
In: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications. New
York, NY, USA: ACM Press; 2006. p. 169–190.

[22] Standard Performance Evaluation Corporation. SPECjbb2015 Benchmark
User Guide; 2017. Available from: https://www.spec.org/jbb2015/
docs/userguide.pdf.

[23] Efron B, Hastie T. Computer age statistical inference. vol. 5. Cambridge Uni-
versity Press; 2016.

[24] Schildt H. Java: A Beginner’s Guide, Sixth Edition. Beginner’s Guide. McGraw-
Hill Education; 2014.

[25] Sestoft P. Numeric performance in C, C# and Java. IT University of Copenha-
gen, Denmark. 2010;185:186.

50

http://openjdk.java.net/jeps/333
https://doi.org/10.1145/3385412.3385977
https://doi.org/10.1145/3381898.3397213
https://www.spec.org/jbb2015/docs/userguide.pdf
https://www.spec.org/jbb2015/docs/userguide.pdf

BIBLIOGRAPHY

[26] Costanza P, Herzeel C, Verachtert W. A comparison of three programming
languages for a full-fledged next-generation sequencing tool. BMC bioinform-
atics. 2019;20(1):301.

[27] Källén M, Wrigstad T. Performance of an OO compute kernel on the JVM:
revisiting Java as a language for scientific computing applications. In: Pro-
ceedings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes; 2019. p. 144–156.

[28] Georges A, Buytaert D, Eeckhout L. Statistically Rigorous Java Performance
Evaluation. ACM SIGPLAN Notices. 2007;42(10):57–76.

[29] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. 2018;.

[30] Tene G, Iyengar B, Wolf M. C4: The continuously concurrent compacting
collector. In: Proceedings of the international symposium on Memory man-
agement; 2011. p. 79–88.

51

BIBLIOGRAPHY

52

Glossary

collector “a system component responsible for garbage collection” 1.

dangling pointer a pointer to an object, which memory has been returned to the
memory manager 1.

mutator the user program, which mutates the objects to be collected by the gar-
abge collector 1.

root “a reference that is directly accessible to the mutator without going through
other objects” 1.

53

GLOSSARY

54

Appendix A

Plots

A.1 SPECjbb2015 Plots

vanilla compact

8600

8700

8800

8900

9000

9100

9200

9300

jO
PS

vanilla compact

8850

8900

8950

9000

9050

9100

jO
PS

Figure A.1: A performance regression of 2% is seen for the new design

vanilla compact

5200

5300

5400

5500

5600

jO
PS

vanilla compact
5350

5375

5400

5425

5450

5475

5500

5525

jO
PS

Figure A.2: A performance regression of 2% is seen for the new design

A.2 DaCapo Plots

55

PLOTS

va
ni
lla

co
m
pa

ct

2000

2020

2040

2060

2080

m
s

(a) avrora small

va
ni
lla

co
m
pa

ct

104000

106000

108000

110000

112000

m
s

(b) avrora large

va
ni
lla

co
m
pa

ct
2015

2020

2025

2030

2035

2040

2045

2050

m
s

(c) avrora small
va

ni
lla

co
m
pa

ct

110000

110500

111000

111500

112000

m
s

(d) avrora large

Figure A.3: avrora results.
A performance regression in avrora small and no statistically significant difference
in avrora large since overlapping confidence intervals.

va
ni
lla

co
m
pa

ct

27500

28000

28500

29000

29500

30000

m
s

(a) biojava

va
ni
lla

co
m
pa

ct

28400

28600

28800

29000

29200

29400

m
s

(b) biojava

Figure A.4: biojava results.
No statistically significant difference in biojava since overlapping confidence
intervals.

56

PLOTS

va
ni
lla

co
m
pa

ct

51

52

53

54

55

56

57

58

m
s

(a) fop small

va
ni
lla

co
m
pa

ct
52

53

54

55

56

m
s

(b) fop small

Figure A.5: fop results.
Performance improvement for the new design.

57

PLOTS

va
ni
lla

co
m
pa

ct

1060

1080

1100

1120

1140

m
s

(a) h2 small

va
ni
lla

co
m
pa

ct

1090

1100

1110

1120

1130

m
s

(b) h2 small

va
ni
lla

co
m
pa

ct

62000

63000

64000

65000

66000

67000

68000

m
s

(c) h2 large

va
ni
lla

co
m
pa

ct

64800

65000

65200

65400

65600

65800

66000

66200

66400

m
s

(d) h2 large

va
ni
lla

co
m
pa

ct

560000

570000

580000

590000

600000

610000

m
s

(e) h2 huge

va
ni
lla

co
m
pa

ct

575000

580000

585000

590000

595000

m
s

(f) h2 huge

Figure A.6: h2 results.
No statistically significant difference can be observed in h2 small and large since
overlapping confidence intervals. A performance regression is seen in h2 huge.

58

PLOTS

va
ni
lla

co
m
pa

ct

110.0

112.5

115.0

117.5

120.0

122.5

125.0

m
s

(a) luindex small

va
ni
lla

co
m
pa

ct

112

113

114

115

116

117

m
s

(b) luindex small

Figure A.7: luindex results.
No statistically significant difference since overlapping confidence intervals.

va
ni
lla

co
m
pa

ct

68

70

72

74

76

78

80

m
s

(a) lusearch small

va
ni
lla

co
m
pa

ct

370

380

390

400

410

420

m
s

(b) lusearch large

va
ni
lla

co
m
pa

ct

71

72

73

74

75

76

77

m
s

(c) lusearch small

va
ni
lla

co
m
pa

ct

385

390

395

400

405

m
s

(d) lusearch large

Figure A.8: lusearch results.
No statistically significant difference in lusearch small since overlapping
confidence intervals. A performance regression is seen in lusearch large.

59

PLOTS

va
ni
lla

co
m
pa

ct
210

215

220

225

230

m
s

(a) jython small

va
ni
lla

co
m
pa

ct

12700

12800

12900

13000

13100

13200

13300

m
s

(b) jython large

va
ni
lla

co
m
pa

ct

214

216

218

220

222

m
s

(c) jython small

va
ni
lla

co
m
pa

ct

12800

12850

12900

12950

13000

13050

13100

13150

m
s

(d) jython large

Figure A.9: jython results.
No statistically significant difference in jython small since overlapping confidence
intervals. A performance regression is seen in jython large.

60

PLOTS

va
ni
lla

co
m
pa

ct

17.5

18.0

18.5

19.0

19.5

20.0

20.5

m
s

(a) pmd small

va
ni
lla

co
m
pa

ct

2675

2700

2725

2750

2775

2800

2825

2850

m
s

(b) pmd large

va
ni
lla

co
m
pa

ct

18.6

18.7

18.8

18.9

19.0

19.1

19.2

19.3

m
s

(c) pmd small

va
ni
lla

co
m
pa

ct

2720

2740

2760

2780

2800

2820

m
s

(d) pmd large

Figure A.10: pmd results.
No statistically significant difference in pmd small since overlapping confidence
intervals. A performance regression is seen in pmd large.

61

PLOTS

va
ni
lla

co
m
pa

ct
330

335

340

345

350

355

360

365

m
s

(a) sunflow small

va
ni
lla

co
m
pa

ct

1500

1600

1700

1800

1900

2000

m
s

(b) sunflow large

va
ni
lla

co
m
pa

ct

340

345

350

355

360

m
s

(c) sunflow small

va
ni
lla

co
m
pa

ct

1600

1700

1800

1900

2000

m
s

(d) sunflow large

Figure A.11: pmd results.
A performance regression is seen in sunflow small and a performance
improvement is seen in sunflow large.

62

PLOTS

va
ni
lla

co
m
pa

ct

52

53

54

55

56

57

58

59

60

m
s

(a) xalan small

va
ni
lla

co
m
pa

ct

2700

2800

2900

3000

3100

m
s

(b) xalan large

va
ni
lla

co
m
pa

ct

55.5

56.0

56.5

57.0

57.5

m
s

(c) xalan small

va
ni
lla

co
m
pa

ct

2800

2820

2840

2860

2880

2900

2920

m
s

(d) xalan large

Figure A.12: xalan results.
No statistically significant difference in xalan small and large since overlapping
confidence intervals.

63

