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Abstract

The hierarchical memory systemwith increasingly small and
increasingly fast memory closer to the CPU has for long been
at the heart of hiding, or mitigating the performance gap
between memories and processors. To utilise this hardware,
programs must be written to exhibit good object locality.
In languages like C/C++, programmers can carefully plan
how objects should be laid out (albeit time consuming and
error-prone); for managed languages, especially ones with
moving garbage collectors, a manually created optimal lay-
out may be destroyed in the process of object relocation. For
managed languages that present an abstract view of memory,
the solution lies in making the garbage collector aware of
object locality, and strive to achieve and maintain good loc-
ality, even in the face of multi-phased programs that exhibit
different behaviour across different phases.
This paper presents a GC design that dynamically reor-

ganises objects in the order mutators access them, and addi-
tionally strives to separate frequently and infrequently used
objects in memory. This improves locality and the efficiency
of hardware prefetching. Identifying frequently used objects
is done at run-time, with small overhead. HCSGC also offers
tunability, e.g., for shifting relocation work towards mutators,
or for more or less aggressive object relocation.

The ideas are evaluated in the context of the ZGC collector
on OpenJDK and yields performance improvements of 5%
(tradebeans), 9% (h2) and an impressive 25ś45% (JGraphT),
all with 95% confidence. For SPECjbb, results are inconclusive
due to a fluctuating baseline.

CCSConcepts: · Software and its engineering→Garbage

collection.

Keywords: data locality, GC, cache optimisation, prefetch-
ing
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1 Introduction

Multi-level caches are designed to hide the memory latency
caused by the increasing gap between CPU processing speed
and memory access times. The designs of these memory
hierarchies assume good object locality, which does not fall
out for free, especially not in high-level languages where
łeverything is an objectž and data structures consequently
distributed over a large memory range. In theory, the op-
timal object layout (in the sense of placing objects to enjoy
maximal cache benefits) could be achieved via careful engin-
eering. However, in practice this rarely happens due to two
challenges, which we now discuss in turn.
The first challenge is that it is time consuming (and/or

extremely difficult) to calculate a program’s optimal lay-
out [15, 20]. To some extent, this could be mitigated by the
(and in managed languages widespread) use of bump-pointer
allocation schemes, which maintains a pointer pointing at
the beginning of free space, and allocation means łbump-
ingž the pointer by requested size. For applications that tend
to access objects in the order they were created, the bump-
pointer allocator automatically generates a suitable layout
which gives good performance. Assuming most programs
exhibit this behaviour, many compacting garbage collectors
choose sliding order, where all objects that are deemed live
are slid to one end, squeezing out garbage, so that their alloc-
ated order is preserved and no łholež of unused space exists.
Abuaiadh et al. [1] confirms this by showing that destroying
this order could drastically reduce application throughput.
Franco et al. [10] show that it only takes a small fraction

of interleaving allocations that do not follow the access or-
der to generate a noticeable slowdown. And even if such
allocations do not exist, the łaccess order mirrors creation
orderž assumption may still not hold consistently through-
out an application. An application may go through multiple
phases with different access patterns on the same set of
objects, different from the allocation order, but still stable
within each phase. This brings us to the second challenge:
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maintaining optimal layout throughout an application’s dif-
ferent phases of execution. Languages that employ a moving
garbage collector could be well-suited to tackle this challenge
as it already involves changing objects’ locations without
changing how they are connected.
There are two main families of moving collectors: copy-

ing collectors traverse the object graph and copy objects
encountered along the way to the destination space; mark-
compact collectors identify live objects and compact the heap
by relocating live objects as well as update pointers to the
objects that are moved. Prior work has built upon moving
collectors to intelligently rearrange objects layout to improve
locality [2, 8, 9, 13, 22], where new objects layout is created
by GC threads based on collected access info. In contrast, our
approach allows mutators to reorganise objects as they ac-
cess them, which not only improves objects locality, but also
creates a layout that is prefetching friendly, and is inherently
responsive to phase changes in applications.
The paper makes the following contributions:

Refining live objects into hot and cold: We introduce a notion
of hot and cold objects, where hot objects are those that were
touched by the mutator since the previous GC cycle (ğ3.1.2)
and show how this information can be obtained cheaply. We
then use this categorisation during object relocation, treating
hot and cold objects differently, which results into hotścold
segregation, and increasing performance (ğ3.3).

Reorganise objects in mutator’s accessing order : With the help
of concurrent relocation, mutators can participate in mov-
ing of objects, directly affecting the order in which objects
are laid out, which is prefetching friendly. This is achieved
without using any bookkeeping data structures to record the
accessing order (ğ3.2).

Implementation in OpenJDK : We describe the implementa-
tion (all of ğ3) as an extension to Oracle’s recently announced
ZGC collector, along with the necessary modifications to the
existing ZGC implementation.

Evaluation of our design: We validate our design and demon-
strate the effect of tuning the system using a family of tuning
knobs on a range of benchmarks from JGraphT, DaCapo and
SPECjbb 2015 (ğ4) with >45% performance increase at best.

In addition, ğ5 discusses related work, and ğ6 concludes.

2 A Primer on ZGC

Before explaining the design of HCSGC in ğ3, we start with
a brief overview of the ZGC collector that HCSGC is based
on [16ś18]. This additionally serves the purpose of showing
the rationale and motivation for several of our choices for
the design and implementation of HCSGC.
ZGC is a non-generational, mostly concurrent, parallel,

mark-compact, region-based garbage collector. It is included
OpenJDK releases since JDK11 (Dec 2018) and enabled by
the special flags -XX:+UnlockExperimentalVMOptions and

-XX:+UseZGC. ZGC uses metadata bits in pointers in combin-
ation with load barriers to ensure a mutator never sees a
stale pointer despite concurrent compaction.

By non-generational, we mean that there is no segregation
of objects by age (or any other classification for that mat-
ter), and a GC cycle involves marking all live objects in the
whole heap. By mostly concurrent, we mean that there are
stop-the-world (STW) pauses (three in a GC cycle), but that
these are very brief, and that the majority of garbage collec-
tion is done concurrently with the application’s threads (aka
the mutators). By parallel, we mean that multiple threads
are used to perform GC work: in STW pauses; in marking

(tracing the entire heap to find all live objects); and in com-

pacting (relocation of live objects to defragment memory
and free garbage objects). By region-based we mean that all
allocations are served from pages of preordained size classes.
Coloured pointers are an abstraction that is used consist-

ently throughout ZGC in relation to its load barrier-based
design: pointers have colours (captured by meta data stored
in the higher-order bits of pointer addresses), and at every
moment in time, all threads agree on what colour is the
łgood colourž (these agreements all take place during a brief
stop-the-world pause, more on this in ğ2.2). The new oper-
ator always returns a pointer with good colour. Loading a
pointer from heap to stack always involves a checkÐa load
barrierÐand a good-coloured pointer will always hit the fast
path which incurs no additional work1. Otherwise, it will hit
the slow path and the slot where this pointer resides will be
updated with a good coloured alias to avoid hitting the slow
path subsequently (denoted self-healing in ZGC parlance).
For example, a stale pointer (a pointer to an object that has
been moved concurrently during compaction, meaning the
address may point to an outdated copy of the object, or an-
other object, or even nothing) is guaranteed to not have the
good colour. Loads of such a pointer by a mutator thread
will be trapped in the load barrier, and the pointer will be
replaced by a correct pointer to the new location and this
updated pointer will be returned to the mutator.

2.1 Allocation and Deallocation in ZGC

The ZGC heap is divided into pages of three size classes:
small, medium and large. Objects are allocated on one of
those pages, depending on their size, as shown in Table 1. For
small and medium pages, bump-pointer allocation scheme
is used, and when the current page can not satisfy the re-
quested size, a new page is allocated. An object larger than
4 megabytes will have its own page; in other words, there is
only one single object on each large page.

Memory reclamation happens on the granularity of a page
and as part of relocation. Depending on how sparsely pop-
ulated a page is, it may get selected for evacuation. During
the relocation phase, all live objects on pages selected for

1Technically, different load barrier are used by mutators and GC.
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Table 1. ZGC Page Size Classes.

Page Size Class Page Size Object Size

Small 2Mb [0, 256] Kb
Medium 32Mb (256 Kb, 4Mb]
Large 𝑁 × 2 (> 4)Mb > 4Mb

evacuation will be moved elsewhere, after which the page
(including all remaining garbage objects) is recycled. This
means that a garbage object may not be freed for long (or
ever) if it resides on a page dominated by long-lived objects.

2.2 The Phases of a ZGC Cycle

A ZGC cycle has three stop-the-world (STW) pauses (all
mutators are stopped), and three concurrent phases, as shown
in Fig. 1. A new ZGC cycle will not start until the previous
one is finished (no overlapping ZGC cycles).
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Figure 1. A ZGC cycle has three stop-the-world pauses
(drawn as diamonds) and three phases (drawn as rectangles),
shown in the order they occur. The grey arrow denotes time.

STW1. A ZGC cycle starts with a STW pause (which we
denote STW1), in which the good colour is selected, all roots
are pushed into mark stacks (for parallel processing2), and
tinted with the good colour. The good colour will be either
M0 or M1; if M0 is selected, M1 will be the good colour in
next ZGC cycle, and the two alternate.

M/R. After the STW1 pause, all threads agree on the good
colour and ZGC transitions into the Mark/Remap phase (de-
noted M/R), and performs classical object graph traversal to
identify and mark all live objects. If a stale pointer is found
during this process, it is updated with the current address
of the object it refers to, and tinted with the good colour.
This guarantees that there are no stale pointers in heap after
the M/R phase has completed. In addition to marking all
live objects, per-page liveness information (the total number
and the total size of live objects on each memory page) is
recorded as well. The liveness information is used to select
pages for evacuation, as outlined at the end of ğ2.1.

STW2. The M/R phase ends with a second stop-the-world
pause (STW2), which ensures that all mark stacks are empty,
and that marking is completed.

2Both mutators and GC threads have their own thread-local mark stack to

reduce synchronisation cost, and GC threads perform work-stealing among

themselves to balance the marking workload. Additionally, mutators will

flush their thread-local mark stacks regularly for idle GC threads to pick up.

EC. Next, using the previously collected per-page liveness
information, all small pages that are allocated prior to STW1
and whose ratio of live bytes (the sum of the sizes of all live
objects) is below a certain threshold (75% by default) are
identified and sorted based on live bytes in ascending order.
Then, the first 𝑁 pages in the sorted list will be flagged as
evacuation candidates (denoted EC). The value of𝑁 is derived
by maximising the number of selected pages subject to the
following constraint:

live bytes on 𝑁 pages

page size
≤ 75%

Medium pages are treated the same, but not large pages.
Since each large page only contains a single object, which is
either live or dead, we can decide whether that large page
should be kept or reclaimed right away (in the current phase,
rather than waiting for RE), without adding them to EC.
Therefore, only small and medium pages are ever in EC.

STW3. EC selection ends with a third and final stop-the-
world pause (STW3). In STW3, the good colour changes to R,
which effectively invalidates all pointers causing mutators
to hit the slow path on loading them. The slow path of the
load barrier will inspect if the to-be-loaded object resides on
a page in EC; if so it will be relocated to another page, then
the slot this pointer resides will be self-healed with the good
colour. By the end of STW3, all roots pointing into EC are
relocated and have the good colour.

RE. Now ZGC transitions into the relocation phase (RE).
In RE, all live objects in EC will be relocated to new pages.
This causes incoming pointers to relocated objects to be-
come stale. A per-page forwarding table is used to record
a map from old addresses to new and are consulted by the
mutators when accesses to stale pointers are trapped in the
load barriers, or during the marking of the next M/R phase
(if no mutator accessed them). Relocation is concurrent with
mutators: if a mutator loads a stale pointer pointing into EC,
it will hit the slow path of the load barrier, and compete with
GC threads for relocation. The linearization point is a CAS
operation when inserting the corresponding entry into the
forwarding table. Whoever succeeds in the CAS will use its
local value (which is the same as the one in the forwarding
table), while others will discard their local value, and read
the new value from the forwarding table.

Note: the good colour is changed twice per GC cycle, and
the window for each choice of good colour is shown in Fig. 2.

Figure 2. The window for each colour (M0, R and M1).
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In addition to the above, ZGC has another phase between
STW2 and EC that handles reference processing for Java’s
soft, weak and phantom references. Because that aspect is
independent of this work, we omit its description entirely.

3 Hot-Cold Objects Segregation GC

We now describe the design of HCSGC and its implementa-
tion on top of ZGC. The objective of HCSGC is to transpar-
ently improve an application’s effective use of cache memory
and hardware prefetching. To this end, HCSGC attempts
to place objects in such a way that they are only brought
into cache when they are about to be used by the mutator ;
moreover, HCSGC attempts to lay them out according to
the mutator access order. Thus, if an object is brought into
cache due to an access by a particular mutator thread, we
expect the subsequent accesses by the same thread to hit the
adjacent object, or at least fall within the same or adjacent
cache line. For now, we restrict ourselves to only handling
objects whose size is smaller or close to the cache line size,
which reside on small pages according to Table 1. We will
discussion this choice further in ğ3.4.
We leverage the fact that relocation is concurrent with

mutator accesses, as shown in ğ2.2. This means that mutators
and GC threads are competing (or alternatively, collaborat-
ing) to perform relocation. A mutator that attempts to follow
a pointer to an object on a page in EC that has not yet been
relocated will perform relocation of that object, which copies
it into a new page. If a mutator follows a path in the object
graph to such to-be-relocated objects, all these objects will
moved and consequently laid out in memory according to
the mutators’ access order, achieving both close placement of
related objects, and in an optimal order if the access path is
repeated. Following this realisation, we provide three ways
of exposing mutators to more relocation:

ś Enlarging EC by flagging more small pages as evacuation
candidates. This allows more objects’ locations to improve.

ś Lazy relocation; deferring the RE phase until the next M/R
phase. This gives mutators an advantage when competing
with GC threads to relocate objects on pages in EC.

ś Dedicated cold pages where we move less frequently ac-
cessed objects during relocation, to avoid them being acci-
dentally brought into memory by close proximity to more
frequently used objects.

3.1 Revised EC selection

As mentioned in ğ 2.2, the criteria used for EC selection
in ZGC is the live ratio, because the sole job of ZGC is to
reclaim unused memory. From that standpoint, there is not
much to gain from relocating a page if it is already densely
populated. With the added goals of HCSGC, a revision of the
EC selection strategy is warranted. Thus, we go through two
possible strategies for EC selection with additional goals in
mind, each with its own merits.

3.1.1 Including All Small Pages in EC. A crude-but-
simple way to enlarge EC is to include all small pages in
EC. This has an immediate upside: it gets rid of the logic
for sorting and finding the first 𝑁 pages. The price of such
crude behaviour is the (potential) added cost of mutators
performing additional relocations (copying) as part of the
first access to every object. For objects that are not accessed
by mutators, GC threads will perform the relocation. If a ma-
chine is not over-provisioned, i.e., it has idle cores, such extra
work may not affect the execution time, since GC threads
run concurrently with mutators. In ğ4, we will show in a
benchmark that such extra work stays hidden in an unloaded
system, but materialises when computing resources become
constrained. We expose this behaviour as an on/off tuning
knob called RelocateAllSmallPages.

This strategy fails if the most frequently accessed objects
are already concentrated on a few pages and the access pat-
tern is stableÐforcing extra copying work on mutators for
no gain. To avoid such cases, we introduce additional logic
in HCSGC that enables a classification of live objects into
hot and cold. Using this extra per-object property, we show
that it is possible to perform more intelligent EC selection.

3.1.2 Hot and Cold Objects. We define a hot object as
one that has been accessed by a mutator since the last GC
cycle. All live objects that are not hot are considered cold.
Hotness as thus defined can be easily captured by mutators
and GC threads through a small extension of the load barrier.
Similar ideas were used in [6, 7].

ś Mutators flag an object as hot on the slow path of a load
barrier (because if accessed, it is hot by definition); and

ś GC threads on finding pointers with R colour while tra-
versing the object graph in the M/R phase, will flag the
corresponding objects as hot. Recall Fig. 2, pointers with
R colour means that they were accessed by mutators since
STW3 of the previous GC cycle.

Per-object hotness metadata is recorded in a bitmap called
hotmap, adapted from the livemap used in ZGC for track-
ing liveness info. Similar to livemap, hotmap is reset at the
beginning of each M/R phase; this renders all objects cold
effectively. Hotness is recorded by mutators and GC threads
during the M/R phase. A per-page total size of hot objects
(hot bytes) is also calculated. We expose the collection of hot-
ness information as an on/off tuning knob called Hotness.

After the M/R phase and before the next phase starts, hot
bytes are used for EC selection. Per-object hotness informa-
tion is used for proactive hotścold objects segregation (ğ3.3).

With the help of this hotness information, we can make a
more intelligent EC selection, as covered in the next section.

3.1.3 EC Selection via Weighted Live Bytes. We intro-
duce the concept of weighted live bytes as an indicator more
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fine-grained than plain live bytes when performing EC se-
lection. Per-page Weighted Live Bytes is defined as:

𝑊𝐿𝐵 =

{

cold bytes if hot bytes = 0

hot bytes + cold bytes × (1−cold conf.) otherwise

The cold confidence is a value in the range [0ś1.0] that indic-
ates how confident we are that a cold object will stay cold
in the near futureÐa simple model of temporal locality. If
zero, weighted live bytes simply łdegrades tož ZGC’s original
live bytes. In contrast, a cold confidence of 1.0 means that
weighted live bytes only considers hot bytes. This value is
exposed as tuning knob, whose default value is 0 to match
the original behaviour of ZGC. If a page contains only cold
objects, we simply use cold bytes (which is equal to live bytes,
the original ZGC behaviour), since there are no hot objects
mixed with cold ones. Using this tuning knob, a relatively
small number of hot objects buried in a page fairly populated
by many live but cold objects could still go into EC, causing
segregation of hot and cold objects. The lower the weight of
cold bytes, the higher the probability that a page with many
cold (but live) objects will be selected for evacuation.

With this new criteria, we are able to influence how large a
portion of the heap that will get selected as EC, and segregate
hot and cold objects living on the same page, without paying
the price of relocating pages already mainly occupied by hot
objects. However, there is a caveat here: if a page is well
populated with hot objects, we cannot use the new criteria
to have it added to EC, even if the access order of those hot
objects are changed. Therefore, mutators will not enjoy the
same layout improvement as in the relocating-all-pages case.

Now that there are potentially more pages going into EC,
and relocation serves an additional purpose to deallocat-
ing garbage, we move on to discus techniques for exposing
mutators to more of the relocation work, in ğğ3.2 to 3.3.

3.2 Deferring Relocation Performed by GC Threads

Even if we flag more pages (and in a more informed manner
using hotness) as evacuation candidates, mutators and GC
threads are still competing to relocate objects on EC pages.
This means that GC threads may sometimes relocate an
object before mutators try to access it, which means that we
miss an opportunity to improve the object’s placement.

The original placement of the RE phase right after the EC
phase in ZGC is motivated by the desire to put the cost of
performing relocation (copying) on GC threads. This saves a
mutator the cost of relocation of objects it accessesÐit only
needs to read their updated addresses from the forwarding
table. With the addition of hotness information, relocation
provides an opportunity to rearrange object layout, not just
reclaiming unused memory. This motivates exposing mutat-
ors to more relocation overhead assuming that improved
locality on subsequent accesses turns it into a net win.

Therefore, instead of having GC threads race with mutat-
ors to relocate objects in EC, we defer the RE phase (and
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Figure 3. Deferring relocation to the next GC cycle exposes
mutators to more relocation work. In ZGC, a GC cycle ends
with RE; in HCSGC a GC cycle starts with RE, allowing
mutators to relocate undisturbed between two GC cycles.

hence the work delegated to GC threads) to the next GC
cycle, as show in Fig. 3. This way, objects may be relocated
according to mutators’ access pattern between two GC cycles.
The cost is that floating garbage will be retained longer, until
the start of the next GC cycle. Thus, with this change, each
GC cycle (except the first, of course) starts with releasing
memory, instead of ending with releasing memory.

Note that this feature is completely orthogonal to hotness
information: hotness information is (optionally) used to se-
lect EC, but deferring relocation done by GC threads can
be done invariant of hotness. We expose this feature as an
on/off tuning knob called LazyRelocate.

3.3 Speculative HotśCold Segregation

In addition to shifting more relocation work to mutators,
it is possible to pro-actively segregate hot and cold objects
in memory to increase the chances of cache-friendly object
placement. Originally in ZGC, each GC thread maintains a
thread-local page to which objects in EC will be relocated,
motivated by avoiding contention on bump pointer alloca-
tion. With the introduction of per-object hotness informa-
tion, we can leverage this property during relocation to move
hot and cold objects to different destinations in memory.

We use the original thread-local page for hot objects, and
introduce another page that we denote the cold page (when
enabled, we call the other thread-local page the hot page)
and use it as the target destination for relocating cold objects.
Consequently, each GC thread in HCSGC has two thread-
local pages, for hot and cold objects, respectively.
Note that this only affects GC threads, so is completely

orthogonal to relocation performed by mutators. However,
exposing mutators to more relocation work using LazyRe-
locate will likely reduce the pressure on the GC threads’
hot pages. We expose this feature as an on/off tuning knob
called ColdPage, which requires that Hotness must be on.

3.4 Operating Only on Small Pages

For EC selection and hotness collection, only small pages
are supported. Since hotness is recorded on the granularity
of objects, a large object with only a few fields accessed will
be considered hot according to our scheme. However, based
on such inaccurate over-approximation, we may decide to
place those large objects together in order to improve cache
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utilisation, but this actually reduces the effective size of cache,
since large parts of those objects are not used. Smaller objects
are more resilient to this problem. Thus, HCSGC only deals
with small pages and leaves medium and large page intact.
In fact, even small pages may be too coarse-grained; recall
in Table 1, small pages can hold objects up to 256𝐾 bytes,
which is still much larger than common cache line size (64
bytes). Ideally, a new page size class in which the max object
size is on the magnitude of cacheline size could have been a
more suitable candidate. We leave this for future work.

4 Evaluation

All benchmarking except SPECjbb2015 is run on an Intel®
Core™ i7-4600U CPU @ 2.10GHz with 2 cores (2 hyper-
threads/core), 12GB RAM, 32KB L1, 256KB L2, 4MB L3, run-
ning Debian 11 (bullseye) with Linux kernel version 5.2.17.
SPECjbb2015, which requires a large heap, is run on an AMD
Opteron Processor 6276 @ 3091.357 MHz with 32 cores (2
hyper-threads/core), 128GB RAM, 16KB L1d, 64KB L1i, 2MB
L2, 6MB L3, running Debian 10 (buster) with Linux kernel
version 4.19.67. For runs on the server, we use numactl to
make sure only physical cores are used to avoid cache thrash-
ing. The OpenJDK commit we build HCSGC on is authored
on 2019-10-14, and the C/C++ compiler used is GCC 9.2.1.

4.1 Configurations

We run our benchmarks for a large number of configurations
created by enumerating all the tuning knobs introduced in
ğ3 and forming łall combinationsž of on/off knobs and Cold-
Confidence values of 0.0, 0.5 and 1.0. All configurations we
used are shown in Table 2. For convenience, we recap our
tuning knobs in one place:

Hotness When on, objects’ hotness is recorded and stored
in the hotmap. This has the overhead of updating the
hotmap which in its current implementation involves
a CAS operation.

ColdPage When on, GC threads use a separate page as des-
tination for cold objects during relocation. This option
requires that Hotness is enabled.

ColdConfidence Anumber 0ś1.0 that influences theweight
of cold objects when calculating live bytes. When 0,
cold objects are treated the same as as live (e.g., the
default ZGC behaviour); when 1.0, cold objects are
treated as garbage (e.g., only count hot bytes as live).
This option requires that Hotness is enabled.

RelocateAllSmallPages When on, all small pages will be
placed in EC during relocation. In theory, especially in
combination with LazyRelocate, this allows mutators
to relocate objects in access order. This option does not
rely on (or take advantage of) hotness information.

LazyRelocate When on, defers the relocation done by GC
threads to the next GC cycle (Fig. 3).

Notably, Config 0 is our baselineÐthe original ZGC beha-
viour which we are trying to improve. Config 1 is the using
our modified ZGC, but all tuning knobs are disabled, mean-
ing the behaviour is equivalent to Config 1, but sources are
not identical. We expect no significant difference between
Configurations 0 and 1. In Configurations 2ś3, hotness is not
recorded, so neither ColdPage nor ColdConfidence can be
used, but we may relocate all pages or do lazy relocation or
both. For the rest of the configurations, hotness is recorded.
In Configurations 5ś7, we leverage hotness to change EC
selection (a larger value of ColdConfidencemeans a larger
EC set). For Config 5, ColdConfidence is set to 0 which
gives us the original ZGC EC selection, as discussed in ğ3.1.3,
thus this configuration shows the overhead of recording hot-
ness. In Configurations 8ś10, 11ś13 and 14ś16, we turn on
LazyRelocate or ColdPage or both. Finally, Config 17ś18
shows if or how LazyRelocate works in the presence of
RelocateAllSmallPages and with ColdPage.

4.2 Data Collection and Visualisation

In order to study the impact of HCSGC, we collect data
on three aspects: execution time, cache statistics, and GC
statistics. Next, we go through each of them and describe
how we collect the data and visualise it.

How Figures are Structured. Figures 4, 5, 7, 8, 9, 10, 11,
and 12 all follow the same layout, each with no less than
seven plots with the following layout (elaborated below):

Execution Time Cache Statistics GC statistics

Wall-clock time in
seconds Average total loads,

Average GC cyc-
les per run

ś"ś, w/ mean and
confidence interval

L1 and LLC misses
normalised against

Average (†) pages
relocated per run

ś"ś, normalised
against ZGC

ZGC (using perf) Heap usage in %
using ZGC

† Note: average of median small pages relocated per run.3

ZGC is Config 0 in all plots. All plots have Config ID on 𝑥 axis,
except for heap usage whose 𝑥 axis shows execution time
(seconds). Negative values in the plots normalised against
ZGC means speedup or fewer loads or misses for HCSGC.

Execution Time. For each configuration in Table 2, we
measure the wall-clock execution time of 𝑁 runs (elaborated
below), producing a sample of size 𝑁 , which is visualised
using box plots [19], as exemplified by the top plot in Fig. 4.
The notations used: the band inside the box is the second
quartile (the median), and the lower and higher end of the
box are the first and third quartile, respectively. The first
quartile (𝑄1) splits off the lowest 25% data from the highest
75%, while the third quartile (𝑄3) splits off the highest 25%
data from the rest. The inter-quartile range (𝐼𝑄𝑅) is defined

3For each run, we get the number of relocated small-pages per GC cycle.

Then, we calculate themedian from this list. Finally, we calculate the average

of the median over multiple runs.
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Table 2. Configurations used in benchmarking. Config 0 is our baseline: unmodified ZGC. 0/1 means a flag was turned off/on.
As for ColdConfidence, we pick [0, 0.5, 1.0]. Config 5 turns on hotness tracking but does not use it.

Tuning Knobs ZGC HCSGC Configurations
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hotness n/a 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ColdPage n/a 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ColdConfidence n/a 0 0 0 0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0
RelocateAllSmallPages n/a 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

LazyRelocate n/a 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

as the difference between the third quartile and the first
quartile, 𝐼𝑄𝑅 = 𝑄3 −𝑄1. Outliers are defined as data falling
outside this range, [𝑄1 − 1.5 × 𝐼𝑄𝑅,𝑄3 + 1.5 × 𝐼𝑄𝑅], which
are further classified into mild outliers, and extreme outliers.
Outliers falling outside the range [𝑄1−3× 𝐼𝑄𝑅,𝑄3 +3× 𝐼𝑄𝑅]

are called extreme outliers, otherwise, they are called mild
outliers. Mild and extreme outliers are denoted using ‘+’ and
‘◦’, respectively. The whiskers indicate the furthest points
from the median that are not outliers.

In order to find the mean estimate and its associated con-
fidence interval, we use bootstrapping: taking the original
sample, resampling from it to form a new sample, called boot-
strap sample, that is also of size 𝑁 . The bootstrap sample
is taken from the original by using sampling with replace-
ment. Each data point in the original sample has the equal
probability to be included into the bootstrap sample. This
process is repeated 10,000 times, and for each of these boot-
strap samples we calculate its mean, called bootstrap mean.
Finally, we calculate the mean for all bootstrap means, which
is the mean estimate for wall-clock execution time, and its
95% confidence interval is marked by 2.5 and 97.5 percentile,
as exemplified by the middle plot in Fig. 4. If the confidence
interval of two configurations do not overlap, then we can

conclude, with confidence level 95%, that there is a significant

difference between the two configurations. In order to illustrate
the relative difference against the baseline, we normalise the
mean estimate and show the difference between each con-
figuration and Config 0 right below in the same figure. A
negative number means reduced execution time.
For synthetic and JGraphT benchmarks, we launch the

VM 31 times and each invocation runs the entire program
end-to-end once. The first execution is discarded, because the
first VM invocation in a series of measurements may change
system states that alters the subsequent measurements per-
sistently, e.g., dynamically loaded libraries stays in physical
memory. Therefore, the sample size is 30. For the DaCapo
benchmarks, we use 5 VM invocations and 25 benchmark
iterations per VM invocation. The first 15 iterations are for
warm-up, and we only preserve the final 10 iterations, which
is used to calculate the average. Therefore, the final sample
size is 5. This methodology is taken from [11]. For SPECjbb

benchmark, we run it end-to-end 5 times, and use its built-in
reporting metrics, throughput and latency scores.

Cache Statistics. We use perf to measure cache metrics:
L1-dcache-loads, L1-dcache-load-misses, and LLC-lo-

ad-misses, reflecting how locality is effected by HCSGC.
These metrics are also impacted by extra GC activities intro-
duced by HCSGC, like RelocateAllSmallPages. We prefix
the commands of launching JVM, and when JVM exits, perf
reports the number of events we specified above. The statist-
ics is for thewhole process sowe cannot distinguishmutators
from GC threads (or other VM internal threads). For DaCapo
benchmarks that use warm-up, we show cache statistics for
the complete run, since perf collects events for the whole
VM invocation. Thus, take these results with a grain of salt.

GC Statistics. In addition to measuring the average num-
ber of GC cycles per run, we extend ZGC’s builtin logging
support to print the number of small pages in EC per cycle,
and calculate the average of the median for all runs to see
how HCSGC tuning knobs increase relocation. (This metric
is not available in Config 0, but should be identical to Config
1.) The data was obtained from the runs in which execution
time was measured (with negligible overhead).Finally, we
show the heap usage in % over time for one run using unmod-
ified ZGC. This shows the allocation rate of the application,
and its tendency to hold on to objects created.

4.3 Our Expectation

Hot and cold objects on a fairly populated page will remain
together if allocated together, since ZGC will never add it
to EC. We expect that RelocateAllSmallPages and a large
value of ColdConfidence could excavate hot objects bur-
ied in such cases, and mutators could enjoy better locality,
reflected in reduced execution time and cache misses.
The difference between RelocateAllSmallPages and

ColdConfidence may be small on execution time (if the
machine is not fully loaded), but the difference in EC size
(the number of pages relocated) per GC cycle could be large,
which will materialise if the machine is saturated.

Additionally, with this extra complexity (larger EC, lazy
relocation, cold page) introduced by HCSGC, each GC cycle
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Figure 4. Synthetic benchmark following the layout described in ğ4.2. For the bottom-left plot, recall that negative 𝑦 values
means speedups; e.g., Config 4 is 30% faster than Config 0. Note the absence of slowdowns.

will take longer time, which paints a pessimistic view of
the heap usage for ZGC. Therefore, more GC cycles may be
triggered, which can be desirable, as objects’ placement can
only change during GC relocation. Of course, this assumes
the machine is not overloaded so that extra GC activities will
not compete with mutators for CPU.

4.4 Sanity Check: Synthetic Micro-Benchmark

As a form of sanity check, we construct a synthetic Java
benchmark that exhibits a stable but unpredictable access
pattern to illustrate that our approach is able to capture such
patterns, and reorganise objects to improve cache utilisation.

In the benchmark, we create an array of 2 × 106 elements,
each pointing to a 32-byte object (including VM metadata).
Here is the main body of the benchmark in pseudo-Java:

1 for (int i = 0; i < 200; ++i) {

2 rand = new Random(0); // use same seed each loop

3 for (int j = 0; j < 800 * 1000; ++j) {

4 index = rand.nextInt(...) // preferably another cache line

5 f(index); // access element in index

6 ++ops;

7 if (ops % 10 == 0) { /∗ allocate garbage to trigger GC ∗/ }

8 }

9 }

The inner loop accesses elements residing in a different
cache line, guided by a random generator. The outer loop
is used to simulate recurring mutator accesses. Because the
random generator is reset using the same seed for each outer
loop, each inner loop will perform identical access sequences.

The remainder of this section explores the impact of HC-
SGC under its many configurations on this benchmark on
performance, loads, cache misses and hotness.

Impact on Execution Time. The execution time under
each configuration is shown in Fig. 4. As this artificially
contrived benchmark has clear hotścold segregation and a
recurring stable access pattern, we can observe the accumu-
lative effect of various tuning knobs, corresponding to the
different tiers of performance above.

The largest improvement is seen in Configurations 4, 10,
16, and 18, which have both large EC (due to relocating all
pages or 100% cold confidence) and lazy relocation enabled.
The second largest improvement comes from Configurations
3 and 17, with large EC due to relocating all pages. Next,
Configurations 7 and 13 show some improvement as well,
with large EC is due to 100% cold confidence. Finally, Config-
urations 2, 5, 8, 11, and 14 show no improvement at all. The
reason is that objects pointed by each array slot never dieÐ
hot objects are always surrounded by live but cold objects,
and those pages will not be added to EC as they are fairly
populated, so objects on those pages will never be relocated.

Impact on Loads and Cache Misses. Fig. 4 shows cache
metrics: Configurations 3, 4, 7, 10, 13, 16, 17, and 18 exhibit
large reduction in L1/LLC misses. Note that for Configura-
tions 3ś18, there are large increase of total loads, but they
are mostly served by cache L1/LLC (small L1/LLC misses),
so it is still a net gain. (For excessive loads to shadow the
benefit of reduced L1/LLC misses, those loads need to be 10×
more, as the access latency of LLC is roughly 10× of that of
L1.) Configurations showing large cache miss reduction are
consistent with the corresponding improved performance in
Fig. 4, showing that HCSGC is effective in improving locality.

Impact on Cycles and Relocation. To understand the
nature of the extra work performed by HCSGC, we compare
the number of GC cycles and the amount of relocation of
the various configurations with out ZGC baseline. As shown
in Fig. 4, the extra loads are due to extra GC cycles and/or
enlarged EC. Since the machine is not overloaded, these extra
GC activities are served by the otherwise idle CPUs, which
are invisible in the execution time.

Adapting to Phase Changes. Fig. 4 shows that HCSGC’s
object placement improves performance for an application
with a single stable access phase. Ideally however, HCSGC
should adapt naturally to phase changes that alter what
objects are accessed by an application, and in what order.
To test this, we extended the single-phase code to simulate
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Figure 5. Synthetic benchmark going through three phases with different access patterns. (Layout following ğ4.2.)

going through multiple, phases, each with its own access
pattern. As shown below, we use three phases, where each
phase has its own seed so that within each phase, the access
order is stable, but different across the phases.

Running this modified benchmark using HCSGC yielded
performance results shown in Fig. 5, which is similar to the
results of single-phase version presented in Fig. 4, meaning
HCSGC can indeed react to phase changes.

1 for (int phase = 0; phase < 3; ++phase) {

2 for (int i = 0; i < 200; ++i) {

3 rand = new Random(phase); // not a constant anymore

4 ... // same as before

5 }

6 }

Overhead of Ample Relocation. As mentioned in ğ3.1.1,
we hypothesise that the cost of relocating all pages will ma-
terialise in an overloaded system. In order to verify that, we
augment the benchmark by adding an array created in the
beginning, but never accessed. This łcold arrayž has length
2×107, meaning the hotścold ratio is 1 : 10. We use the same
setup, but constrain the VM to a single core using taskset.
The result is shown in Fig. 6, and large overhead is observed
for Configs 3, 4, 17, and 18, which use RelocateAllSmall-
Pages. On the other hand, ColdConfidence can still yield
performance improvements, as in Configs 7, 10, 13, and 16.

4.5 Graph Algorithms with JGraphT

We run two benchmarks from from the JGraphT library [14]:
maximal clique (MC) (BronKerboschCliqueFinder), which

Table 3. LAW Graph nodes and edges.

Dataset Nodes Edges Heap (MB)

uk (complete) 100,000 3,050,615 n/a

uk (CC) 28,128 900,002 1,024

uk (MC) 5,099 239,294 4,096

enwiki (complete) 5,616,717 128,835,798 n/a

enwiki (CC) 28,126 80,002 600

enwiki (MC) 43,354 170,660 4,096
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Figure 6. High overhead of RelocateAllSmallPages (on
in configurations 3, 4, 17 and 18; else off) when there are
many cold objects and computing resources are constrained.

implements the Bron-Kerbosch maximal clique enumera-
tion algorithm as described in [21], and (weakly) connected

components (CC) (BiconnectivityInspector), which im-
plements biconnected components algorithm as described
in [12]. Inspired by recent GC work [23, 24], we use the
graph datasets uk-2007-05@100000 and enwiki-2018, which
are from Laboratory for Web Algorithms (LAW) [4, 5]. We
implement a minimal driver which does nothing more than
call the APIs from LAW to load the graph, insert all nodes to
a new graph from JGraphT, and calls a method from JGraphT
on the graph where almost all processing time is spent.

Processing the whole graph takes several days so we only
use part of the graph as the inputs. The total graph size, the
part actually used and heap size used are shown in Table 3.
For uk(CC) and enwiki(CC), as shown in Fig. 7 and Fig. 8, not
much garbage is created, so the number of GC cycles is small,
andmost of them occur within the first 5 seconds of VM start-
up. However, that is enough to reorganise objects in the order
facilitating mutator access, reflected by low cache missed
and reduced execution time. For uk(MC) and enwiki(MC), as
shown in Fig. 9 and Fig. 10, some allocation is done by the
Bron-Kerbosch algorithm, which triggers GC often, and we
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Figure 7. Connected components (CC) with JGraphT using the uk dataset. (Layout following ğ4.2.)

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

W
a

ll-
c
lo

c
k
 t

im
e

 (
s
)

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18M
e

a
n

 e
s
ti
m

a
te

 a
n

d
 C

I 
(s

)

-40

-30

-20

-10

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Config ID

-100

-80

-60

-40

-20

0

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Total loads

L1 misses

LLC misses

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

#
G

C
 c

y
c
le

s

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

#
p

a
g

e
s
 r

e
lo

c
a

te
d

Config ID

N/A

10

20

30

40

50

60

0 5 10 15 20 25 30

H
e

a
p

 u
s
a

g
e

 (
%

)

Perf statistics / configuration (normalised against Config 0)

(Above) Performance in wall-clock time / configuration       (Below) Mean estimate and CI

(Below) Performance normalised against Config 0 (Below)  Heap Usage (%) — single run of Config 0

(Above)  GC Cycles / configuration            (Below)  Relocated pages / configuration

Figure 8. Connected components (CC) with JGraphT using the enwiki dataset. (Layout following ğ4.2.)
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Figure 9. Bron-kerbosch (MC) algorithm with JGraphT using the UK dataset. (Layout following ğ4.2.)
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Figure 10. Bron-kerbosch (MC) algorithm with JGraphT using the enwiki dataset. (Layout following ğ4.2.)
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see periodic GC cycles. Similar to uk(CC) and enwiki(CC),
cache misses are reduced along with execution time. Note
that for uk(MC) there is a large difference between Config 2
and Config 3, which means that many hot objects reside on
pages that are well populated so that those pages are never
added to EC according to original ZGC criteria. Therefore,
there is a clear staircase pattern as we increase the value of
ColdConfidence in Configs 5ś7, 8ś10, 11ś13, and 14ś16;
this means that we can excavate hot objects buried among
cold objects using this knob.

4.6 Tradebeans and h2 from DaCapo

Next we look at benchmarks from the DaCapo suite of Java
benchmarks [3], with release version 9.12-bach-MR1. Since
HCSGC takes advantage of recurring and stable access pat-
terns, it is not intended to be used with short running applic-
ations. Therefore, we only look at benchmarks that support
the huge input size setting. Thus, the selected benchmarks
are tradebeans and h24. The heap size is set to 4GB, and the
performance is shown in leftmost in Fig. 11 and Fig. 12. For
tradebeans, HCSGC does not improve performance much,
which we attribute to the fact that so many objects are very
short lived. For such a program, locality benefits must come
through placement at allocation-time, but HCSGC may only
improve locality for objects that live more than one GC cycle.
For h2, we see improvements of 5ś9% for several configura-
tions, with <2% overhead for tracking hotness (Configura-
tion 5). RelocateAllSmallPages outperforming ColdCon-

fidence may indicate that the same set of hot objects are
accessed but with different access pattern.

4.7 SPECjbb2015

We run SPECjbb2015 with composite setting (single VM,
single host) on the server with 64G heap. SPECjbb reports
two scores corresponding to throughput and latency as shown
in Fig. 13. As the confidence intervals are overlapping, we
cannot say whether HCSGC impacts the performance of
SPECjbb. We attribute this to the fact that most objects in
SPECjbb do not survive a GC. Heap usage in Fig. 13 may give
the impression that long-lived objects are accumulated in
heap, but that is not true. SPECjbb ramps up the allocating
rate in order to find when the response time stops meeting
the requirement. Therefore, the heap usage after a GC cycle
becomes larger, due to higher allocation rate. Additionally,
ZGC starts a new GC cycle earlier to avoid out-of-memory
given higher allocation rate. If we want to exclude the effect
of concurrent allocation, we can check the survival rate of
objects allocated prior to GC start, which is ~1%, indicating
that most objects do not survive a GC cycle.

4tradesoap also supports huge input size. We did however see crashes sim-

ilar to the description in an open issue (https://github.com/dacapobench/

dacapobench/issues/113) of DaCapo (a concurrency bug which only some-

times lead to crashes), so in the end we were not able to include it.

4.8 Summary

The fact that large improvement is observed from JGrapht
benchmarks, while almost no effect from SPECjbb, indicates
that HCSGC depends on applications exhibiting stable access
patterns on long-lived objects in order to improve locality.
Future works include using a feedback loop to auto-tune

HCSGC knobs and mix configurations. A potential direc-
tion could be collecting cache miss rate, which can be used
for more aggressive segregation if the result is positive or
backing off otherwise. Combination of HCSGC with a gener-
ational scheme could allow short-lived objects to be handled
by young GC, while HCSGC focuses on improving locality
of long-lived objects. Finally, adding a new page size class,
where max object size is of magnitude of cache-line size,
would allow fine-grained relocation.

5 Related Work

Chilimbi and Larus use an online profiling technique to
track recently accessed objects and build a temporal affinity
graph [9] based on the frequency of accesses to pairs of ob-
jects within a temporal window. They devise a new copying
algorithm that take advantage of affinity so that objects with
high affinity will be grouped together. In contrast to this
pioneering work, HCSGC does not need to construct any
such graph as mutators are tasked with reorganising the
objects by accessing them. Not only will objects with high
temporal affinity be grouped together, but also they are laid
out in the optimal order (assuming a stable access pattern).
As far as we can tell, Chilimbi and Larus’ approach does not
suffer from problems due to objects being hot across several
mutators, who will then compete to relocate them.

Adl-Tabatabai et al. [2] uses hardware performance monit-
oring to identify cachemiss-intensive traversal paths through
linked data structures, and then remedy the situation by
having the JIT compiler inserting appropriate prefetch in-
structions. Our approach clusters frequently accessed objects
together and reorganises them in the order mutators access-
ing them, which is friendly to plain hardware prefetching.
Online object reordering [13] takes advantage of a mov-

ing garbage collector (a generational copying collector) to
improve spatial locality. It uses sampling to identify hot meth-
ods, from which hot fields are discovered. When a (minor
or major) GC cycle starts, hot fields are copied before cold
ones. Note that while this captures and improves topological
locality (hot fields together with their parent), our approach
work also on objects that not connected by a pointer.

Chen et al.’s work on locality optimisation [8] collects
object access information via throttled samples, and sub-
sequently uses this information to improve temporal cache
locality and page locality (objects recently accessed are laid
out continuously in a hierarchical decomposition order). In
contrast, our approach rearranges the hot objects in the or-
der that mutators access them regardless of their structural
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Figure 11. Results for DaCapo’s tradebeans benchmark. (Layout following ğ4.2.)
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Figure 12. Results for DaCapo’s h2 benchmark. (Layout following ğ4.2.)
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Figure 13. SPECjbb2015. Leftmost: throughput score. Middle: latency score. (Higher is better in both cases.) Rightmost: Heap
usage of a single run of Config 0 with exec time in minutes on the 𝑥 axis.

relationship. We believe that this improves both cache and
page locality if the access pattern is stable. However, Chen
et al.’s work is more flexible in terms of being able to run in-
dependent of GC cycles and being throttled if an application
does not exhibit any locality that can be leveraged.

6 Conclusion

HCSGC is a highly configurable approach to transparently
improve cache locality of managed languages by usingmutat-
ors to perform relocation of objects in a prefetching-friendly
way, where stable access paths enjoy good locality. HCSGC
supports various modes of operation, some of which impose
very little overhead for a crude design, and others which

make more informed decisions at the expense of additional
run-time tracking overhead.

While our SPECjbb results are inconclusive due to a fluctu-
ating baseline, HCSGC shows speedup for tradebeans (5% at
best) and h2 (9% at best), with 95% confidence. For JGraphT,
several HCSGC configurations deliver substantial speedups:
≈20%, ≈35% and ≈45%, all with 95% confidence. For all bench-
marks, a few configurations yield negative performances, but
considerably less than the performance increases.

HCSGC demonstrates great potential that GC, via hotness
tracking, could deliver significant performance improvement
by distinguishing live objects into hot and cold, and further
segregating these groups, with marginal overhead.
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