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Abstract
Aconstitutive hypothesis of the JavaVirtualMachine garbage collector ”ThinGC”,
presented by Mingkun Yang et al. [1], an extension of Oracle’s ”ZGC”, is that
capitalising on possible temporal locality could optimise collection by limiting
the total number of objects to manage. To achieve GC optimisations, ThinGC
classifies objects as hot (recently referenced) or cold, separates the hot and
cold objects into distinct memory spaces, and collects the spaces separately
using two garbage collectors.
In order to examine to what extent this temporal locality can actually be

observed, this thesis analyses the behaviour of objects classified as hot and
cold by ThinGC. Reviewed behaviour includes: tendency of cold objects to
remain cold, expected length of cold streaks, and if the tendency to remain hot
or cold is related to the type of the object.
In order to examine object behaviour, hotness information for all objects

in selected benchmarks from the DaCapo benchmark suite is logged in each
GC cycle of ThinGC. The hotness information of each object is then compiled
following address forwardings, and metrics estimating the behaviour of each
object is calculated.
Analysis of the charts and tables presenting the results of the metric calcu-

lations show for instance that ”reheats” of objects are uncommon, cold objects
usually stay steadily cold, and long cold streaks are more common than long
hot streaks.
The results highlight distinctly different behaviours of hot and cold objects

and indicate that the concept of classifying objects by hotness and treating cold
objects separately could be well founded.
The results also show some classes of objects being more or less likely to

stay cold. If these class behaviours could eventually be proven to be reliable
by examining a larger set of programs, the information could be useful as a
baseline for GC tuning. Also, if hotness informationwere collected and similar
metrics were calculated concurrently, this information could aid in live GC
decision making.
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Sammanfattning
En grundläggande hypotes för Java virtual machine skräpsamlaren ”ThinGC”,
presenterad av Mingkun Yang m. fl. [1], en utveckling av Oracles ”ZGC”, är
att ett nyttjande av eventuell temporal lokalitet skulle kunna optimisera skräp-
samling genom att begränsa den totala mängden objekt som behöver behand-
las. För att optimisera skräpsamling klassificerar ThinGC objekt som varma
(dvs. nyligen refererade) eller kalla, separerar heta och kalla objekt i skilda
minnesutrymmen, och skräpsamlar dessa minnesutrymmen separat med två
skräpsamlare.
För att undersöka i vilken utsträckning denna temporala lokalitet faktiskt

kan observeras, granskar denna uppsats beteende av objekt klassificerade som
heta eller kalla av ThinGC. Undersökta beteenden inkluderar: tendens bland
kalla objekt att förbli kalla, antal cykler objekt förväntas förbli kalla och om
tendenser bland objekt att förbli heta eller kalla är relaterade till objekttyp.
För att kunna granska objekts beteenden loggas värmeinformation för al-

la objekt i utvalda ”benchmarks” från benchmarksviten DaCapo under varje
skräpsamlingscykel av ThinGC. Varje objekts värmeinformation kompileras
sedan genom att följa vidarebefodringar av adresser, och till slut beräknas mä-
tetal som uppskattar objektens beteende.
Analys av de diagram och tabeller som presenterar resultaten av beräkning-

en av mätetalen visar, till exempel, att återuppvärmningar av objekt är säll-
synta, att kalla objekt oftast håller sig stadigt kalla, och att kalla objekt oftast
håller sig kalla längre än varma objekt håller sig varma.
Resultaten visar tydligt skilda beteenden för heta och kalla objekt och indi-

kerar att konceptet att klassificera objekt efter värmeinformation och behandla
heta och kalla objekt separat kan vara välgrundat.
Resultaten visar också att vissa objektklasser är mer eller mindre benägna

att hålla sig kalla. Om dessa klassbeteenden kan visas vara pålitliga genom att
undersöka en större mängd program skulle informationen kunna vara använd-
bar som en baslinje för finjustering av skräpsamling. Om värmeinformation
kan samlas, och liknande mätetal beräknas parallellt med exekvering, skulle
denna information också kunna bistå skräpsamlaren med att ta direkta beslut.
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Chapter 1

Introduction

Since Java helped introduce garbage collection (GC) to mainstream comput-
ing, widening the use, garbage collectors has improved significantly. Garbage
collection still introduces unwanted costs however. For applications with large
amounts of traffic and growing heap sizes, inefficient garbage collection can
introduce latency and increase the runtime of typical data processing tasks by
up to 40% [2]. Consequently, the push towards the ideal “invisible” collector
continues.

1.1 Background
Since the effectiveness of garbage collection is coupled with application per-
formance, optimising garbage collection, previously through approaches like
parallelisation, concurrency and generational partitioning, is an important ob-
jective of the GC field. Even garbage collection schemes which generate
improved performance have their shortcomings. In the case of generational
garbage collection these include fragmentation, tenured garbage and the cost
of the generational write barrier are challenges [3].
A new garbage collection scheme introduced by Mingkun Yang et al. [1],

”ThinGC”, classifies objects as hot or cold depending on whether they were
recently used by the program, separates hot and cold objects into distinct mem-
ory spaces (hot-storage and cold-storage) and collects these spaces separately
using separate garbage collectors for hot and cold objects. The hypothesised
benefits of this scheme are a reduction in the number of live objects managed
concurrently by the hot-storage collector, and the possibility of storing cold
objects in cheaper, higher capacity memory.

1
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1.2 Problem
Garbage collection schemes involving hotness often designate hotness to paths,
regions or methods rather than directly to objects [4, 5]. Noted studies where
hot/cold data identification and separation have been utilised [6, 7, 8, 1] don’t
look into the behavioural tendencies of objects classified as hot or cold. Con-
sequently, behaviour such as stability and streak length of objects classified as
hot or cold has previously not been thoroughly examined.

1.3 Objective and Purpose
The objective of this thesis is to investigate and evaluate if distinct behavioural
tendencies can be observed for objects classified as hot and cold.
The purpose of this thesis is to provide insight into object behaviour in or-

der to support development of garbage collection schemes involving object
hotness.
Another objective of this thesis is to examine the potential of the approach

to garbage collection optimisation which partitions the set of objects by their
hotness.

1.4 Research Question
In order to explore the potential of the ThinGC approach we imagined the
environment where this approach would perform optimally and explored if we
could observe these conditions within a benchmark suite. We wondered:

- Can we observe distinguishable behavioural tendencies for hot and cold
objects?

Example of research questions regarding tendencies which we imagined
would be beneficial to the approach were:

- Do objects have a tendency to stay cold once they have become cold?

- Do cold streaks tend to be longer than hot streaks?

- Do objects tend to be predominantly hot or cold during their lifetime?
Once we had answers to these questions we felt that we could consider the

following question:

- Is it possible to justify some overhead of a GC optimisation approach
which identifies and treats hot and cold objects separately?
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1.5 Contributions
The main contributions of the study are summarised as follows:

- A method to gather and compile object hotness information.

- A method and suggested metrics to evaluate object hotness information.

- A systematic experimental evaluation.

· Resulting plots and tables.

- Insights into how the collected hotness information could be leveraged
for optimisations.

The results of the study showed that distinguishable behavioural tenden-
cies for hot and cold objects, which would benefit the ThinGC approach were
prevalent. Examples of observed tendencies were: cold objects usually stay-
ing cold and cold streaks usually lasting longer than hot streaks. The results
also showed that objects which were not consistently hot had a tendency to be
predominantly cold during their lifetime.
From these results, we gathered that the GC optimisation approach of classi-

fying objects by hotness and treating cold objects separately could be justified.

1.6 Sustainability, Ethics and Societal Aspects
This thesis has societal impact in its attempt to contribute to the research field
of garbage collection and offer support for implementations of garbage collec-
tors, specifically, but possibly not exclusively, in the hotspot virtual machine
of OpenJDK.
Open source software development has arguable societal impact, and raises

several interesting ethical issues, such as the freedom and public benefaction
it provides [9, 10, 11].
Any further societal impacts would depend on what applications the possi-

ble future GC optimisations are used to optimise.
Since increased execution time implies increased energy consumption [12],

these possible future GC optimisations would also combat increased energy
consumption and improve the sustainability of software [13]. This is especially
important since garbage collection can be a big contributor to runtime [2].
This study has been conducted in collaboration with the Oracle Corporation

which has a stated code of ethics and business conduct [14, 15].
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1.7 Outline
The thesis is presented as follows:
Chapter 2, Background andRelatedWork. This chapter provides needed

context by summarising basics of garbage collection and giving an overview of
Oracle’s ZGC collector and the ThinGC collector. The chapter also discusses
previous work.
Chapter 3, Methods. This chapter outlines and details the methods used

to gather and process object hotness information.
Chapter 4, Results. This chapter presents and discusses the resulting plots

and tables of the experimental evaluation.
Chapter 5, Discussion and conclusions. This chapter summarises and dis-

cusses the consequence and significance of the results. The chapter also con-
siders possible future use of the results.



Chapter 2

Background and Related Work

2.1 Garbage Collection
Garbage collection [16] automatically manages memory by striving to reclaim
memory occupied by objects that are no longer referenced by the program.
Automatic memory management can replace manual memory management
where memory needs to be manually and explicitly allocated and freed. Many
common errors accompany failedmanualmemorymanagement, such asmem-
ory leaks and invalid or uninitialised memory accesses to name a few. Avoid-
ing these errors is one of the advantages of automatic memory management,
along with avoiding inter-module dependencies and enabling fully modular
programming [17]. A disadvantage however is the added overhead introduc-
ing latency which can be crucial to some applications. [18]
A tracing garbage collector traverses the tree of objects interconnected by

references and identifies reachable objects in the graph. These objects are
considered “live” while all other objects are considered “dead” [17].
The roots, or root set of the object tree are always reachable objects such as

thread objects of currently running threads, objects currently on the call stack
and classes loaded by the bootstrap or system class loader.
Other strategies for automatic memory management are reference counting

and escape analysis. In reference counting, counts of the number of references
to each object are maintained and garbage objects can be identified as objects
with a zero reference count. Escape analysis evaluates whether the lifetime of
a pointer can be proven to be restricted only to the current procedure and/or
thread. When discussing garbage collection in this paper we will be referring
to tracing garbage collection.
Some important metrics in garbage collection are pause time and through-

5
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put. The pause time of a collection algorithm is the time in which the collector
needs to halt program execution in order to ensure the integrity of the object
trees. Throughput is the percentage of total execution time not spent in garbage
collection.
The original tracing method for garbage collection is the “naive mark and

sweep”. This method consists of a mark stage and a sweep stage. In the mark
stage the entire root set is traversed, marking every root object as live, every
object being pointed to by a root object as live, continuing with the objects
pointed to by this object. In the sweep stage, memory allocated by objects not
marked as live is freed [17].
Variations on this original method include parallel, concurrent, compact-

ing and generational collection. Parallel collection utilises multiple CPUs, if
available, and more physical memory to run the same collecting algorithm on
several threads, resulting in a faster collection. In concurrent collection one
or more garbage collection tasks can be executed simultaneously with the ap-
plication, which lowers pause time. Compacting collection strives to avoid
fragmentation in memory by compacting all live objects and completely re-
claiming the remaining memory. This enables the use of a single pointer for
allocation, however a non compacting collector completes garbage collection
faster. In a Generational collector, memory is divided into separate pools hold-
ing objects of different ages. Different algorithms are applied in the genera-
tions based on commonly observed characteristics. Generational collection
exploit the following observations, known as the weak generational hypoth-
esis: most allocated objects die young and few references from old to young
objects exist [19, 20, 21, 22, 23].
In most of these variations, pause time is connected to heap size and pro-

cessing large heaps would lead to longer pause times and more latency.
Since increased execution time implies increased energy consumption [12],

decreasing energy consumption is a motivation for improving garbage collec-
tion.

2.2 ZGC
The Z Garbage Collector, ZGC, is the latest, currently experimental garbage
collector from Oracle. ZGC is a mark compact, single generational parallel
and concurrent collector. ZGC is designed to make pause times independent
of heap or live-set size, and to never have pause times exceeding 10ms. Be-
cause the pause times are independent of the heap size, ZGC can efficiently
handle heaps ranging from a few hundred megabytes to multi terabytes in size.
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Being able to manage large amounts of memory without suffering application
performance is important, for example, when serving a large amount of users
concurrently [24].
One ZGC cycle consists of three main phases and three pauses where execu-

tion of the program halts. The main phases are the mark/remap phase (M/R),
the selection of evacuation candidates phase (EC) and the relocation phase
(RE). The three pauses are Stop The World 1 (STW1), Stop The World 2
(STW2) and Stop The World 3 (STW3). The phases will be presented fur-
ther in 2.2.1.
In order to run concurrent garbage collection while presenting only valid

pointers to the running program (the mutator) ZGC utilises two critical con-
cepts: coloured pointers and load barriers. Coloured pointers uses four of the
unused bits in the 64-bit pointer of 64-bit platforms to store information about
the object. The four bits are named “Finalizable”, “Remapped”, “Marked0”
and “Marked1”. The Finalizable bit (F) indicates if an object will be processed
by a finalizer when collected. The Remapped (R),Marked0 (M0) andMarked1
(M1) bits are the three “colour” bits. At any given time during garbage collec-
tion, one of these three colours will be defined the “good” colour and the other
two will be “bad” colours. The assignment of the good colour takes place in
the STW1 and STW3 phases of ZGC, the first and third pause of a ZGC cycle
. In the third pause, the R bit is always declared the good colour. In the first
pause, either the M0 or M1 bit is declared the good colour. The good colour
declared in the first pause alternates between M0 and M1 every other cycle.
A load barrier is code which is executed when a pointer from the heap is

loaded. Load barriers are utilised by ZGC in order to ensure that any loaded
pointer is replaced by the calculation of the corresponding pointer with good
colour [24, 1].

2.2.1 ZGC Phases

STW1

The ZGC cycle starts with STW1. In STW1 the good colour is declared to be
M0 or M1 and the roots of the object graph are added to the mark stack, which
keeps track of objects which are yet to be marked. The roots are also passed
through a mark barrier which detects and updates any invalid pointers to have
the newly declared good colour.
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M/R

The mark remap phase performs traditional recursive marking. The object
graph is processed by GC threads using depth first traversal using a mark stack.
A mark barrier changes the colour of any processed pointers. The liveness
information on the page corresponding to the object is updated to correctly
reflect the number of live bytes on a page. Marking of an object can fail in the
case where multiple GC threads are marking objects in parallel and the object
has already been marked. In this case, the pointer is still added to the mark
stack to ensure full traversal of the graph.
A remap is performed by the mark barrier if the pointer points into the set

of evacuation candidates.

STW2

STW2 is a synchronisation point. Here ZGC checks that the mark stacks are
empty and the mark barriers are flushed from the mutators.

EC

In the evacuation candidates (EC) phase, the evacuation candidate set of sparsely
populated pages is created. Evacuation candidates are pages which have not
been allocated in the current GC cycle. The candidates with the least liveness
information are added to the evacuation candidates set.
Pages in ZGC can be of small, medium or large size. Small pages contain

small objects, medium pages contain medium sized objects and large pages
contain only one large object. Because of this, the liveness information of a
large page corresponds only to one object and large pages do not participate
in relocation.

STW3

After the EC phase follows STW3where the good colour is declared to be the R
colour, the roots of the object graph are once again processed and are relocated
if they point to any evacuation candidate, otherwise the pointer colour of the
roots are changed to the new good colour R.

RE

In the subsequent relocation phase concurrent relocation is performed by sev-
eral GC threads migrating all evacuation candidate pages. When the address
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of an object is changed, this mapping from old to new address is recorded in
the Forwarding table.
Mutator threads can help the GC threads with relocating the objects on evac-

uation pages if they access an object during this relocation phase, since the load
barrier will recognise that the pointer does not have the good colour.
After all objects in all evacuation candidate pages have been relocated, the

ZGC cycle is complete. Any pointers pointing to abandoned addresses are
fixed either in the next mutator access or in the M/R phase of the next ZGC
cycle [24, 1].

2.3 ThinGC
ThinGC is a collector which builds on ZGC and combines elements from gen-
erational GC and cache hierarchies. ThinGC aims to benefit from the prin-
ciple of temporal locality by classifying objects as hot, if the object was re-
cently accessed by a mutator, or cold otherwise. This classification is made
possible by the existing coloured pointers and load barriers in ZGC. ThinGC
strives to limit the number of live objects which needs to be managed by ZGC
and to enable frequently accessed objects (hot objects) to be stored differently
from rarely accessed objects (cold objects). Cold objects could for example
be stored on cheaper, higher capacity memory. Reducing the number of live
objects for ZGC to manage reduces the time of the mark/remap phase, which
is the most time consuming phase of ZGC [1].
An object is marked as hot, either by the load barrier if it is accessed by a

mutator in a ZGC cycle, or by the mark barrier in the M/R phase if the R bit in
the object pointer is set to one, which means that the object has been accessed
by a mutator during the time between two ZGC cycles.
Hot and cold objects are separated into hot storage and cold storage and

managed by two different garbage collectors. Hot storage is managed by ZGC
and cold storage is managed by the Cold Storage Garbage Collector (CSGC).
CSGC cycles are started by ThinGC after ZGCmarking is done, unless there

is already an active CSGC cycle, and runs on a dedicated thread. Pages with
limited amounts of hot objects are moved from hot storage into cold storage
by ThinGC.
Beyond reclaiming memory in cold storage, CSGC aims to identify unused

ThinGC remembered set (remset) slots and remap pointers to reheated objects.
CSGC, like ZGC, is a tracing garbage collector which starts with its root set,
then follows references, but stops at the boundary between the heap and cold
storage, marking corresponding remset slots as reachable and adding to the
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roots of the following ZGC cycle. The root set of CSGC is populated by objects
relocated from the heap to cold storage and fields of reheated objects which
refers to objects in cold storage. In this way the root set of CSGC captures all
pointers from the heap to cold storage.
Moving an object from hot storage into cold storage is called “freezing” and

moving an object from cold storage into hot storage is called “reheating”. Ob-
jects in cold storage cannot be accessed directly by application threads. Before
an access to a cold object is allowed to initiate, the cold object is reheated.
Validation against DaCapo benchmarks has shown that ThinGC did lower

the amount of live objects to be managed by the hot storage collector [1].

2.4 Related Work

2.4.1 Object Behaviour
Dieckmann and Hölzle [25] measure the distribution of object types, as well as
lifetimes, sizes and reference density (fraction of fields that contain pointers)
for the SPECjvm98 benchmarks. Theirs is a nice complement to this work
since it helps the reader understand the allocation behaviour of Java applica-
tions.

2.4.2 Object Hotness
Object Hotness Prediction

Seidl and Zorn [8] have proposed a method for dynamic storage allocation
which can successfully predict which heap objects will be highly referenced
(HR) at the time they are allocated. Predictions are produced by identifying
HR objects based on training inputs, then using object information such as
size, contents of call stack, the value of the stack pointer and the depth of the
stack. They find that program references to heap objects are highly skewed
and most objects are not highly referenced objects.
Akram et al. [26] explore write-intensity prediction based on object size,

class type and allocation site in order to allocate highly mutated objects to
the heap and rarely mutated objects in non-volatile memory. The exploration
showed that write-intensity predictions of Java objects using allocation site are
the most accurate.
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Hot/Cold Classification in Flash Memory

Examples of successful implementations of hot/cold data identification and
separation can be found in performance optimisation of flash memory, where
it has great importance. Hot/cold data identification and separation has been
used to improve the efficiency of garbage collection/cleaning policies [27, 28,
29, 30, 31], to optimise the flash translation layer [32], and in the design of
SSD file systems [33].
These studies focus mainly on correctly identifying objects as hot or cold

based on references and do not consider object behaviour once objects are
classified as hot/cold.

2.4.3 Copying GCs and Locality of Reference
Previous work towards optimising copying garbage collectors usually desig-
nate hotness to regions or paths through a program, rather than objects, by
identifying program traversal patterns and frequently executed methods. The
use of traversal algorithms have been shown to improve locality of reference
in the collected heap [34, 35, 36, 37]. No examination of hot and cold object
behavioural tendencies were realised in these papers.
Chilimbi and Larus [38] proposed an online profiling scheme for a copy-

ing algorithm which observes objects accesses, constructs an object temporal
affinity graph and uses the GC to rearrange the objects for better cache locality.
They mention that most objects are small, often less than 32 bytes, and that
most objects accesses are not lightweight (i.e. multiple fields are accessed
together or an access involves a method invocation). Because of this, they
argue that profiling can be implemented at object, not field granularity since
most objects are smaller than cache blocks and their profiling instrumentation
(several instructions per object access) will not incur a large overhead.

2.4.4 Generational GCs and Object Lifetime Prediction
Object lifetime prediction based on program allocation site has been studied
with the aim of optimising generational garbage collection [39, 40, 41, 42, 43].
These schemes base their predictions solely on allocation site and do not focus
on object behavioural tendencies.
Harris [44] proposed using class in addition to allocation site to dynamically

predict lifetimes. This work looked at tendencies of classes to become pre-
tenured and found that classes which become pre-tenured are closely related
in the inheritance hierarchy. Harris stated that it may be possible to identify
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a common supertype (possibly an abstract class or an interface), and to share
sampling information between all of its subtypes.

2.4.5 Object Connectivity
On the subject of temporal locality, Lam, Wilson, and Moher [45] presented
work which groups co-active objects in order to improve temporal locality. A
few common data types with common access patterns were targeted for optimi-
sation and the garbage collector was made to recognise data structures headed
by commonly used data types in order to adapt the traversal approach. The jus-
tification for the assumed access patterns were the author’s assumptions and a
study of access statistics.
On the subject of co-active objects, optimisations has been achieved from

prefetching cache lines in objects pushed onto the mark stack [46]. Hirzel et al.
[47] also explored the connectivity of heap objects and discovered that con-
nectivity strongly correlates with object lifetimes and death times. Partitioning
objects by connectivity could therefore be advantageous. However the object
behaviour analysis in their paper center around lifetime rather than hotness.



Chapter 3

Methods

The motivation behind the design of ThinGC is that, due to locality of ref-
erence, objects classified as hot or cold will likely retain their classification.
Consequently the effort to classify and process objects according to their hot-
ness will be justified.
This thesis will examine whether this locality of reference can be observed

by studying objects as they are relocated to various memory addresses and
classified as hot or cold. Properties of the objects such as class and size will
also be taken into account to examine whether common trends can be observed
for objects exhibiting similar properties.
This chapter consists of a brief overview of the method (section 3.1), a more

detailed and technical description (section 3.2), assessment of the reliability of
the method (section 3.3), reflection of application to other areas (section 3.4)
and estimation of limitations of the method (section 3.5).

3.1 Overview
The collection and processing of object information consists of three steps.
In the first step, object information such as class, size, hotness and current
address for each object, along with information on all forwarded addresses,
is logged in each GC cycle of ThinGC. This process is described in detail in
subsection 3.2.1. Information produced by the same object in each GC cycle
is then compiled in a second step by following the initial object address as
the object is moved by the compacting GC (ThinGC) throughout its lifetime.
This process is described in detail in subsection 3.2.2. This compiled object
information is then, in the third step, used to create plots and calculate met-
rics used to analyse object behaviour. This process is described in detail in

13
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subsection 3.2.3.

3.2 Implementation
Any implementation described in the following sections was realised specifi-
cally for the purpose of this thesis.

3.2.1 Logging
In order to follow an object through its life and potentially many addresses,
at the beginning of the ThinGC cycle, in STW1 when the forwarding table
from the previous cycle is complete, the from-to address information of each
forwarding in the forwarding table is logged.
The object information such as address, hotness, class and size for objects

on live pages is logged in STW3, right before the relocation phase. The for-
warding and page table information is logged during STW phases when appli-
cation threads are not executing in order to provide accurate information for
that cycle.
The logging is performed by a method added to ThinGC

ZHeap::log_hot_cold_data()), which is located so that it has access
to the page table and relocation set.
ZHeap::log_hot_cold_data() is called from the class which di-

rects the major phases of ThinGC.
In STW1, ZHeap::log_hot_cold_data() processes all forwardings

in the relocation set (with a relocation set iterator) and runs each forwarding
through another addedmethod (ZForwarding::log_hot_cold_data())
which skips empty forwarding entries, gets the to-offset and from-index from
the forwarding entry, converts the entry page table/from-index into the from-
address and logs the to and from-addresses along with the cycle number using
existing logging functionality.
In STW3, ZHeap::log_hot_cold_data() processes all pages in the

page table. For all objects within live pages which were not allocated after the
latest mark phase, the function checks if an object is hot in a “hotmap” using its
address, determines the class and size of the object and logs the object address,
hotness, size, class and the cycle number using the same logging functionality
as in STW1.
Figure 3.1 shows when the forwarding and page tables are logged.
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Figure 3.1: Logging from ThinGC.

The size of objects is determined to be “small”, “medium” or “large” by glob-
als in ZGC. The limit of small objects depends on the size of small pages which
in turn depend on the ZPlatformGranuleSizeShift global which in
this case is 21, allowing 2MB for small pages and 2.5KB for small objects.
ZHeap::log_hot_cold_data() logs the forwarding and page table in-
formation into the same file with identifying rows specifying if forwarding or
page table information are to follow.
In Table 3.1 the overhead of the logging can be seen in time and number of
extra GC-cycles. We see that the number of extra cycles is usually only one.

# cycles # cycles Time real
rounded (s)

Time real
rounded (s)

Benchmark Logging No logging Logging No logging
Avrora 5 4 5 5
Fop 5 4 6 3
H2 9 9 142 16
Jython 8 7 22 11
Luindex 3 2 3 2
Lusearch 7 6 5 4
Pmd 7 7 9 4
Sunflow 7 7 8 5
Tradebeans 10 8 39 20
Xalan 6 5 7 5

Table 3.1: Overhead of logging in time (s) and number of GC cycles.
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3.2.2 Compiling Hotness Information
After the object hotness information has been logged from ThinGC, the for-
warding table and page table information are combined. The address and hot-
ness information of each object is collected into a story which spans its life-
time. This is done by a separate script (process_trace.rb) which pro-
cesses the log file into an “object file” with one row of information for each
object. The results are saved to file in order to limit executions. This also en-
ables other potential scripts to be run on this compiled data which we call an
“object file”.
The script grows a persistent hashmap containing one triplet of cycle data [cy-
cle, address, hotness] for every cycle each object has been alive. The triplets
of cycle information are associated with the stringified object identifier (cycle,
address, size and class information).
When processing objects, the object identifier is associated with the current
address of the object in a “current cycle” hashmap. Cycle triplets are also
associated with their corresponding object identifiers in the aforementioned
persistent hashmap.
When processing a forwarding, the object identifier in the hashmap for the
current cycle is re-associated with the “destination” address of the forwarding.
When processing the next cycle, the hashmap from the previous cycle contain-
ing object identifiers is preserved. In this preserved hashmap, identifiers for
forwarded objects are found at their new addresses, the identifiers are trans-
ferred to the hashmap for the current cycle and the triplets of cycle data are
once again associated with the object identifiers in the persistent hashmap.
In the implementation of this first script, edge cases are considered such as
edge-case one: two different objects being forwarded to and from the same
address in the same cycle and edge-case two: one object dying at an address
in the same cycle as another object is forwarded to that same address.
Table 3.2 shows the time andmemory needed to run (process_trace.rb)
on each of the ten selected benchmarks.
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process_trace.rb

Benchmark Time real
rounded (s)

Mem max
rounded (MB)

Avrora 1 63
Fop 7 455
H2 407 5465
Jython 16 578
Luindex 1 49
Lusearch 2 60
Pmd 10 416
Sunflow 3 165
Tradebeans 41 1091
Xalan 2 65

Table 3.2: Runtime and peak memory usage of the first script
(process_trace.rb) which compiles hotness information.

3.2.3 Calculating Hotness Metrics
Each row of object lifetime information in this newly created object file is then
processed by a second script (process_obj.rb) which calculates statistics
for the objects and the program.
Calculations in the second script include: the number of hot and cold ob-
jects in each ThinGC cycle, the number of transitions (either from hot to cold
or from cold to hot) for each object, the number of reheats (recall: transi-
tions specifically from cold to hot) for each object and the longest consecutive
streak for each object, expressed as a percentage of the object lifetime in GC
cycles. When calculating consecutive hot/coldness, only the longest consecu-
tive streak of an object is considered.
When collecting consecutive streak information for each object in a bench-
mark, the object is counted as an object which has had a longest consecutive
streak lasting a certain number of GC streaks. This streak length is always
between 0 and the maximum number of GC cycles of the program. When ex-
pressing this streak as a percentage of the object lifetime however, the streak
can be anywhere between and including 0% and 100% of object lifetime. The
object is therefore counted as an object which has had a longest consecutive
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streak lasting within a certain ten-percentage interval of its lifetime. Finally we
can then produce information on the number of objects which has had longest
hot/cold streaks lasting within a certain interval. The intervals are: (0,10), [10-
20), [20-30), [30-40), [40-50), [50-60), [60-70), [70-80), [80-90) [90-100) and
100.
These metrics were chosen to give an overview of object behaviour and con-
sistency. The metrics were computed for the set containing all objects as well
as the subsets containing small, medium and large sized objects, and for the
subsets containing objects of each one of the classes in the given program.
When all rows of object information have been processed, the most common
classes are determined by count and kept for future comparison between pro-
grams.
Four types of plots, which will be presented in the results section, are printed
presenting the results from the metric calculations. The plots are printed for
the set of all objects, for the size subsets (small, medium and large) and for
the the subsets of the most common classes. The plots were created using
Pyplot [48] and can be used to get an overview of program behaviour, compare
behaviour of different subsets of objects within the same program or the same
subset of objects across programs.
In order to more efficiently compare statistics across programs, weighted av-
erages for the given program are also calculated. Metrics include: average
longest consecutive streak (as a percentage of program lifetime in GC cycles),
average number of reheats (as a percentage of the maximum possible num-
ber of reheats the object could have made), and average percentage of objects
with a “long” longest consecutive streak. A consecutive streak of an object
was defined as “long” if it exceeded 50% of the object lifetime.
These averageswere calculated for the set containing all objects, for the subsets
containing small, medium and large sized objects and for the subsets contain-
ing objects of the most common classes in the program.
These average metrics were chosen in order to investigate whether locality of
reference could be observed. If indeed objects in cold storage are likely to
remain cold, a larger percentage of objects will be consecutively cold for what
could be considered a long time (more than 50% of the object’s lifetime in this
case) and transitions from cold to hot would not be common.
Table 3.3 shows the time and memory needed to run (process_obj.rb)
on each of the ten selected benchmarks.
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process_obj.rb

Benchmark Time real
rounded (s)

Mem max
rounded (MB)

Avrora 31 339
Fop 42 340
H2 218 341
Jython 49 347
Luindex 30 337
Lusearch 32 339
Pmd 43 340
Sunflow 34 339
Tradebeans 67 355
Xalan 31 339

Table 3.3: Runtime and memory usage of the second script
(process_obj.rb) which calculates metrics and produces plots and
tables.

3.3 Reliability
The reliability of the logging from ThinGC is tied to the reliability of existing
code developed and tested by Oracle. The added code mimics already existing
examples of how to correctly iterate forwarding and page tables.
The reliability of the first script was ensured by 4 tests. A test to determine
that, in the summation of an object’s lifetime, the difference between two con-
secutive cycle numbers is always one. A test to validate each forwarding in
the completed summation of an object lifetime. A test to confirm that all ob-
jects from the HCG-log are summarised, and a test to assure that there are no
duplicates of the unique object identifier (object address together with the cy-
cle in which the object was created). The first script was also implemented in
two languages with two different approaches to see that both implementations
would produce the same result.
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3.4 Application to Other Areas
Since mutator accesses classify objects as hot or cold, the results are inde-
pendent from the specific garbage collector used and can be applied in any
situation where object behaviour information is applicable.
The results do rely on the ZGC size globals to classify objects as small,
medium or large. This can easily be modified however, to introduce custom
size definitions when collecting data from an another source. Alternatively,
the pure object size can be collected when logging and a classification of size
can be added in one of the current scripts.

3.5 Limitations
Logging the information from ThinGC slightly increases the total number of
GC cycles for most programs we collected information from. A report of the
number of GC cycles with and without logging is included in Table 3.1. This
could have an effect on the metric calculations, however we deemed the in-
crease in cycles to be slight enough not to effect measurements significantly.
Since the first script collects object information from the log file into a
hashmap which is kept in memory and printed to file only after an entire log
file is processed, processing the log files with the first script can require a sig-
nificant amount of memory when handling a program with a large number of
objects, see Table 3.2.
The first script also expects the log file from ThinGC to have a certain layout.
If using data collected any other way, either the first script or the alternatively
collected data will need to be modified.
Since the second script processes the compiled information of each object life-
time, the runtime of the second script can be significant when handling object
files for programs with a large number of objects, see Table 3.3.
The second script is adapted for the needs of this thesis, plots and tables are
not produced from user input. Editing of the second script will be required in
order to produce additional plots and tables.
The metrics calculated by the second script are initial ideas and can serve as
a starting point. Modifications can be done, depending on what purpose the
data is being collected for. For example experimenting with what classifies
as a long consecutive streak, changing the classification of ”consecutive” to
allow relatively short interruptions, or collecting information about the second
longest consecutive streak.
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More specific research questions could be explored by collecting more focused
data. The behaviour of a specific class could be explored. Since the second
script produces results for the five most popular classes from each program,
the collection is not guaranteed to contain statistics for a specific class in a
program. The collection could be modified to examine classes of interest,
specified by the user.
This paper contains only data collected from the DaCapo benchmark suite
[49] which forms a small sample size. The method of extending this sample
is however presented in this thesis.



Chapter 4

Results

In this chapter we present the plots and tables produced as a result of the study.
The chapter consists of section 4.1: a brief summary of the results to come,
section 4.2: a presentation of the benchmark-suite used and the objects it con-
tains, section 4.3: an in depth description and presentation of plots, and sec-
tion 4.4: an in depth description and presentation of tables.
The values in the tables are rounded to two decimal places to improve read-
ability.

4.1 Overview
Four types of plots were created to present the results. First, The “Reheats”
plot, which shows the eagerness of objects to transition from cold to hot. Sec-
ond, the “Ratios” plot, where the percentage of hot and cold objects in each
GC cycle is displayed. Third and fourth, the “Streaks” and “Main tempera-
ture” plots, which shows two ways of expressing the lengths of each object’s
longest hot and cold streak.
From the “Reheats” plots we can determine if objects have a tendency to re-
main cold once they have become cold. If objects do generally remain cold,
the number of reheats should be low for a high percentage of objects.
From the “Ratios” plots we can, for example, observe the steadiness of cold
objects, in what cycles (if any) the number of hot or cold objects increase or
decrease, and the ratio of hot and cold objects in a given cycle.
From the “Streaks” and “Main temperature” plots we can deduce if long cold
streaks are more common than long hot streaks and how long these longest hot
and cold streaks tend to be, both as a number of cycles and as an approximate
percentage of object lifetime.

22
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Three tables of average metrics were also composed in order to compare
benchmarks. The following metrics populate the tables: average number of
reheats, the average length of the longest consecutive hot/cold streak, and the
average percentage of ”mostly” hot/cold objects in a program.
In these plots and tables, object and program lifetimes are always expressed as
a number of GC cycles.
The plots and averages were produced and calculated separately for objects of
small, medium and large size (as classified by ZGC), for objects of the five
most common classes in each program and for all objects combined.

4.2 Benchmark suite

Benchmarking was done on an Intel(R) Core(TM) i5-6200U CPU@ 2.30GHz
with 4 cores (2 hyper-threads/core), 32KB L1, 256KB L2, 3072KB L3, 5.7
GB RAM, Running Ubuntu 16.04 LTS with Linux kernel version 4.15.0-74-
generic (x86_64) and the C/C++ compiler used was GCC 7.4.0.
The chosen benchmark suite is the DaCapo benchmark suite [49] version 9.12-
MR1-batch. The chosen benchmarks from the suite, along with heap sizes and
number of GC cycles of the logged run are presented in Table 4.1.

Benchmark Heap size Nr GC cycles
Avrora 70 Mb 5
Fop 180 Mb 5
H2 1400 Mb 9
Jython 1000 Mb 8
Luindex 120 Mb 3
Lusearch 600 Mb 7
Pmd 300 Mb 7
Sunflow 800 Mb 7
Tradebeans 2000 Mb 10
Xalan 600 Mb 6

Table 4.1: Heap sizes and number of GC cycles of chosen benchmarks.

A study of the types of objects contained in the benchmark suite was made,
and concluded that the suite contains mostly small and medium sized objects
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by ZGC standards, as can be seen in Table 4.2. Due to this, comparison of
objects of different size was hindered.

Benchmark Nr. objects Small obj Med obj Large obj
Avrora 59486 100% 0% 0%
Fop 624203 99,9997% 0,0003% 0%
H2 6093832 99,9997% 0,0002% 0,0001%
Jython 693350 99,9991% 0,0009% 0%
Luindex 66683 100% 0% 0%
Lusearch 102684 100% 0% 0%
Pmd 591435 100% 0% 0%
Sunflow 219098 99,9991% 0,0009% 0%
Tradebeans 1061769 99,9997% 0,0003% 0%
Xalan 60142 100% 0% 0%

Table 4.2: Ratios of objects of different sizes in DaCapo benchmarks.

The prevalence of the top five most popular classes between the benchmarks
was also looked into, see Table 4.3. The top 5 most common classes were:

- ”[B”: ByteArray,

- ”String”: java.lang.String,

- ”HashMap$Node”: java.util.HashMap$Node,

- ”Class”: java.lang.Class,

- ”ConcurrentHashMap$Node”: java.util.concurrent.ConcurrentHashMap$Node.
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Benchmark [B String HashMap$
Node

Concurrent
HashMap$
Node

Class

Avrora 16,24% 15,85% 8,93% 2,64% 2,70%
Fop 7,71% 7,58% 4,36% 0,66% 0,46%
H2 7,16% 7,15% 0,22% 0,07% 0,03%
Jython 18,02% 17,87% 0,84% 8,72% 0,58%
Luindex 15,17% 14,31% 7,56% 5,14% 2,22%
Lusearch 22,73% 21,95% 3,29% 1,77% 1,28%
Pmd 15,12% 15,02% 1,51% 0,43% 0,39%
Sunflow 4,74% 4,60% 2,15% 1,15% 0,90%
Tradebeans 10,75% 10,40% 7,43% 3,81% 1,12%
Xalan 18,21% 17,81% 11,19% 3,06% 3,12%
Average 13,59% 13,25% 4,75% 2,74% 1,28%

Table 4.3: Ratios of objects of different classes in DaCapo benchmarks.

The percentages of objects whichwere consistently either hot or cold and never
transitioned were also collected, see Table 4.4. From this table we can see that,
on average in one of the chosen benchmarks, more objects are consistently hot
than consistently cold. The percentages for consistently cold objects are more
dependable, with a 4,36% difference between the benchmark with the highest
(tradebeans, 4,36%) and lowest (sunflow, 0%) value. This suggests that we
can be confident that the percentage of consistently cold objects will be close
to its average (1%) in the benchmarks chosen. Accordingly most objects are
hot during at least one GC cycle.
The percentages of consistently hot objects however seem to be undependable.
We see about a 71% difference between the the benchmark with the lowest
(jython, 10,49%) and highest (sunflow, 81,45%) value. This highlights a
possible factor for suitabilty to the ThinGC approach. We see that in some
benchmarks, for example sunflow, the percentage of objects which are ever
cold are considerably lower than in other benchmarks, for example in jython.
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Benchmark Hot Cold
Avrora 27,81% 0,12%
Fop 77,91% 0,60%
H2 18,33% 2,07%
Jython 10,49% 0,25%
Luindex 72,41% 0,04%
Lusearch 61,39% 1,42%
Pmd 56,82% 1,75%
Sunflow 81,45% 0%
Tradebeans 19,68% 4,36%
Xalan 38,42% 0,08%
Average 46,47% 1,07%

Table 4.4: Percentages of consistently hot and cold objects in DaCapo bench-
marks.

Continuing the review of the benchmark suite, the average lifetime of objects
of different types within the benchmarks were calculated. The lifetimes are
expressed as a percentage of the total number of GC cycles in the program.
Average lifetimes of objects of different sizes can be found in Table 4.5.
Medium sized objects seem to have longer lifetimes on average than small
sized objects, medium sized objects are however considerably underrepre-
sented and the measurement could be unreliable.
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Benchmark All Small Medium
Avrora 67,54% 67,54%
Fop 31,72% 31,72% 100%
H2 60,46% 60,46% 44,44%
Jython 43,97% 43,97% 52,08%
Luindex 55,34% 55,34%
Lusearch 39,38% 39,38%
Pmd 34,54% 34,54%
Sunflow 33,93% 33,93% 100%
Tradebeans 60,18% 60,18% 26,67%
Xalan 80,70% 80,70%
Average 50,78% 50,78% 64,64%

Table 4.5: Average lifetimes of objects (as a percentage of program lifetime).

Average lifetimes of objects of different classes can be found in Table 4.6.
Benchmark [B String HashMap

$Node
Concurrent
HashMap
$Node

Class

Avrora 68,12% 68,22% 64,07% 90,80% 84,05%
Fop 41,41% 41,22% 36,97% 59,49% 78,17%
H2 58,92% 58,87% 50,16% 98,24% 95,90%
Jython 45,29% 45,01% 84,09% 43,77% 95,51%
Luindex 64,57% 65,68% 66,85% 61,54% 80,65%
Lusearch 39,56% 39,93% 82,70% 97,34% 96,85%
Pmd 31,27% 31,21% 59,96% 52,90% 87,63%
Sunflow 96,34% 96,50% 98,08% 93,31% 97,58%
Tradebeans 74,62% 74,55% 78,40% 70,86% 82,63%
Xalan 90,76% 91,27% 55,24% 95,34% 98%
Average 61,09% 61,25% 67,65% 76,36% 89,70%

Table 4.6: Average lifetimes of objects of different classes (as a percentage of
program lifetime).
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The average lifetimes of consistently hot and cold objects can be found in
Table 4.7 where we see that consistently cold objects have longer lifetimes on
average than consistently hot objects.

Benchmark Hot Cold
Avrora 49,07% 79,73%
Fop 24,57% 32,11%
H2 12,11% 49,25%
Jython 38,91% 56,34%
Luindex 38,55% 78,67%
Lusearch 21,58% 14,76%
Pmd 21,94% 35,98%
Sunflow 19,78% 85,71%
Tradebeans 35,21% 39,36%
Xalan 57,00% 60,13%
Average 31,87% 53,20%

Table 4.7: Average lifetimes of consistently hot and cold objects (as a percent-
age of program lifetime).

4.3 Plots
The plots are constructed to give an overview of objects and provide a way to
observe trends in the benchmarks.

4.3.1 Reheats
As previously stated, a reheat is a transition from cold to hot storage. A high
percentage of objects reheating few times signifies an overall reluctance of
objects to reheat within the benchmark.
In Figure 4.1 (“avrora”), Figure 4.2 (“lusearch”), Figure 4.3 (“sunflow”), Fig-
ure 4.4 (“fop”), Figure 4.5 (“luindex”), Figure 4.6 (“jython”) and Figure 4.7
(“xalan”), close to 100% of objects were never reheated and most of the very
few remaining objects reheated only once or twice.
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Figure 4.1: Number of reheats
for all objects in the ”avrora” benchmark.

Figure 4.2: Number of reheats
for all objects in the ”lusearch” benchmark.

Figure 4.3: Number of reheats
for all objects in the ”sunflow” benchmark.

Figure 4.4: Number of reheats
for all objects in the ”fop” benchmark.
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Figure 4.5: Number of reheats
for all objects in the ”luindex” benchmark.

Figure 4.6: Number of reheats
for all objects in the ”jython” benchmark.

Figure 4.7: Number of reheats
for all objects in the ”xalan” benchmark.

In Figure 4.8 (“tradebeans”), Figure 4.9 (“pmd”) and Figure 4.10 (“h2”),
the percentages of objects reheating more than once were higher than in
figure 4.1-4.7, but for Figure 4.8 (“tradebeans”) and Figure 4.9 (“pmd”) the
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number of reheats is still relatively low. In Figure 4.10 (“h2”) however, we
see that a significant percentage of objects (about 42%) reheat twice which is
a considerable number of reheats given the program lifetime of “h2” in GC
cycles.

Figure 4.8: Number of reheats
for all objects in the ”tradebeans” benchmark.

Figure 4.9: Number of reheats
for all objects in the ”pmd” benchmark.
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Figure 4.10: Number of reheats
for all objects in the ”h2” benchmark.

These plots suggest that the risk of an object reheating once it has become cold
is low and that objects tend to stay cold once they have become cold.

4.3.2 Ratios
When plotting all objects across all GC cycles of a benchmark, we can ob-
serve general trends for hot and cold objects throughout the benchmark run-
time. Viewing the data in this form however, we don’t know for certain what
percentage of the cold objects stay cold. Even if the bars from one cycle to
the next are identical, two equally sized groups of objects of opposite hotness
could both have transitioned in the time between cycles. Thanks to the “Re-
heats” plots however, we know that the probability of objects reheating is low,
and plotted cold bars in adjacent GC cycles are probably referring to the same
objects.
For most benchmarks, especially Figure 4.11 (“tradebeans”), Figure 4.12
(“xalan”), Figure 4.13 (“lusearch”) and Figure 4.14 (“sunflow”), cold objects
usually seem to stay steadily cold, neither decreasing nor increasing drastically
in numbers once they have become cold. For these benchmarks, cold objects
also seem to represent a significant percentage of the objects. Exceptions
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where the percentage of cold objects is not as significant are Figure 4.15
(“fop”) and Figure 4.16 (“luindex”), nevertheless the cold objects in these
benchmarks still seem to stay steadily cold.

Figure 4.11: Number of hot and cold objects
in each GC cycle of the ”tradebeans” benchmark.

Figure 4.12: Number of hot and cold objects
in each GC cycle of the ”xalan” benchmark.

Figure 4.13: Number of hot and cold objects
in each GC cycle of the ”lusearch” benchmark.

Figure 4.14: Number of hot and cold objects
in each GC cycle of the ”sunflow” benchmark.
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Figure 4.15: Number of hot and cold objects
in each GC cycle of the ”fop” benchmark.

Figure 4.16: Number of hot and cold objects
in each GC cycle of the ”luindex” benchmark.

We find in Figure 4.17 (“avrora”) and Figure 4.18 (“jython”) that cold objects
do not only steadily stay cold like previously mentioned for figures 4.11-4.16,
but the number of cold objects also increase towards the end of the program
runtime.

Figure 4.17: Number of hot and cold objects
in each GC cycle of the ”avrora” benchmark.

Figure 4.18: Number of hot and cold objects
in each GC cycle of the ”jython” benchmark.

Another interesting pattern of behaviour can be found in Figure 4.19 (“pmd”)
and Figure 4.20 (“h2”) where we still see cold objects staying steadily cold
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with an increase of cold objects towards the end of the program lifetime. In
these plots however we also see objects possibly reheating in the very last
cycle.

Figure 4.19: Number of hot and cold objects
in each GC cycle of the ”pmd” benchmark.

Figure 4.20: Number of hot and cold objects
in each GC cycle of the ”h2” benchmark.

4.3.3 Streaks
These plots show the lengths of hot and cold streaks of objects in a program.
A streak is defined as a number of GC cycles where the object stayed hot or
cold. Only the longest hot and cold streak of each object is considered.
In most plots of the DaCapo benchmarks below, (Figure 4.21 (“jython”),
Figure 4.22 (“avrora”), Figure 4.23 (“sunflow”), Figure 4.24 (“xalan”), Fig-
ure 4.25 (“tradebeans”), Figure 4.26 (“lusearch”) and Figure 4.28 (“h2”)) we
can see that long cold streaks are more common than long hot streaks. In fact
objects’ longest hot streaks are most often only one GC cycle long. Any sig-
nificant percentage of longest cold streaks of length one can only be found in
Figure 4.25 (“tradebeans”), Figure 4.26 (“lusearch”) and Figure 4.28 (“h2”)
where they are still far outnumbered by length one hot streaks.
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Figure 4.21: Consecutive hot and cold streak
lengths of objects in the ”jython” benchmark.

Figure 4.22: Consecutive hot and cold streak
lengths of objects in the ”avrora” benchmark.

Figure 4.23: Consecutive hot and cold streak
lengths of objects in the ”sunflow” benchmark.

Figure 4.24: Consecutive hot and cold streak
lengths of objects in the ”xalan” benchmark.
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Figure 4.25: Consecutive hot and cold streak
lengths of objects in the ”tradebeans” benchmark.

Figure 4.26: Consecutive hot and cold streak
lengths of objects in the ”lusearch” benchmark.

Figure 4.27: Consecutive hot and cold streak
lengths of objects in the ”fop” benchmark.
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Figure 4.28: Consecutive hot and cold streak
lengths of objects in the ”h2” benchmark.

Figure 4.29: Consecutive hot and cold streak
lengths of objects in the ”pmd” benchmark.

From these plots we also see that streaks lasting an entire program lifetime are
very rare and are only ever hot streaks.
These plots however do not take into account and compare the streak to the
object lifetime and so the following plot is also presented:

4.3.4 Main Temperature
In these plots, the lengths of the longest hot and cold streaks of each object are
expressed as a percentage of the object lifetime.
When taking into account the object lifetime, the plots show that it is common
for objects to have hot streaks which lasts their entire lifetime. This is
consistent with the information presented in Table 4.4. Something to consider
along with this result is that the examination of the DaCapo benchmark
showed the average lifetime of consistently hot objects to be fairly short (27%
of program lifetime), as can be seen in Table 4.4.
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Figure 4.30: Consecutive hot and cold streak
lengths of objects in the ”fop” benchmark

(as a percentage of object lifetime).

Figure 4.31: Consecutive hot and cold streak
lengths of objects in the ”luindex” benchmark

(as a percentage of object lifetime).

Figure 4.32: Consecutive hot and cold streak
lengths of objects in the ”lusearch” benchmark

(as a percentage of object lifetime).

Figure 4.33: Consecutive hot and cold streak
lengths of objects in the ”sunflow” benchmark

(as a percentage of object lifetime).
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Figure 4.34: Consecutive hot and cold streak
lengths of objects in the ”pmd” benchmark

(as a percentage of object lifetime).

Most objects which are not consistently hot have longest hot streaks lasting no
longer than 60% of object lifetime. Most longest cold streaks however lasts
longer than 60% of object lifetime as we can see in Figure 4.35 (“avrora”),
Figure 4.36 (“jython”), Figure 4.37 (“tradebeans”) and Figure 4.38 (“xalan”).
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Figure 4.35: Consecutive hot and cold streak
lengths of objects in the ”avrora” benchmark

(as a percentage of object lifetime).

Figure 4.36: Consecutive hot and cold streak
lengths of objects in the ”jython” benchmark

(as a percentage of object lifetime).

Figure 4.37: Consecutive hot and cold streak
lengths of objects in the ”tradebeans” benchmark

(as a percentage of object lifetime).

Figure 4.38: Consecutive hot and cold streak
lengths of objects in the ”xalan” benchmark

(as a percentage of object lifetime).

The one and only exception where most longest cold streaks are not longer
than 60% of object lifetime is Figure 4.39 (“h2”) below:
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Figure 4.39: Consecutive hot and cold streak
lengths of objects in the ”h2” benchmark

(as a percentage of object lifetime).

As we have seen it is common for objects to have hot streaks lasting only 30%
to 40% of its lifetime and also common for the longest hot streak of an object
to last an entire object lifetime. Hot streaks seem to usually either last entire
lifetimes, or just be pre/interludes to cold streaks. Our knowledge from the
previous plots, along with the fact that most objects which are consistently
hot are short lived leads us to assume that most hot streaks are short. We
also see that long cold streaks in relation to object lifetime are common (as
in Figure 4.32 (“lusearch”), Figure 4.33 (“sunflow”), Figure 4.36 (“jython”),
Figure 4.37 (“tradebeans”) and Figure 4.38 (“xalan”)).

4.4 Tables
The tables of averages were created to facilitate comparison between, and ob-
serve trends across benchmarks. The trends observed with cross-benchmark
averages are streak length, expressed as a percentage of program or object
lifetime, either for all objects combined or for specific classes, and reheat ten-
dency. The averages were calculated to give an insight into object stability in
terms of hotness across benchmarks.
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The percentages of consistently hot or cold objects, originally from Table 4.4,
is included in the ”Consistently hot” column to provide context to the average
streak lengths.
The chosen benchmarks of the DaCapo benchmark suite contains very few
objects which ZGC would classify as large, so sufficient measurements could
not be collected to include large object behaviour in the following tables. Since
most objects are small, the values for small sized objects and all objects are
very similar and only the values for all objects are included in the tables.
Chosen DaCapo benchmarks which do not contain medium sized objects have
also been excluded from the average calculation in order to give a more accu-
rate depiction of howmedium sized objects behave in programs where they do
appear. Most chosen DaCapo benchmarks however contain very few medium
sized objects as can be seen in Table 4.2.
Classes were chosen from among the top ten most common classes for each
benchmark. The aim was to get as many measurements as possible for each
chosen class and present classes that were present in as many of the chosen
benchmarks as possible. As a result of this approach, all classes are present in
all chosen benchmarks.
In the ”diff” row, the average for a specific size or class in a benchmark is com-
pared to the average for all objects combined, and displayed as the difference
between the two averages.
The classes included in the tables are:

- ”[B”: ByteArray

- ”String”: java.lang.String

- ”HashMap$Node”: java.util.HashMap$Node

- ”Class”: java.lang.Class

- ”ConcurrentHashMap$Node”: java.util.concurrent.ConcurrentHashMap$Node

4.4.1 Average Consecutive Streak
The “average consecutive streak” metric expresses the weighted mean of
the longest consecutive streak of all objects in each program, expressed as a
percentage of the program lifetime in GC cycles. Longest consecutive streaks
of length 0 have been excluded from the average calculation in order to give
a better understanding of the average length of longest hot/cold streaks when
they do occur. A long average longest consecutive hot/cold streak would then
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give an assurance of object hot/cold stability throughout the program runtime.
Being aware of an average object hot/cold stability factor could contribute to
predicting reheats and avoiding wasteful freezes.
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Hot Streaks
Benchmark All objects Consistently

hot
Medium
sized
objects

[B

avrora 28,59% 27,81% 20,90%
fop 23,92% 77,91% 50% 21,43%
h2 18,66% 18,33% 20,51% 11,34%
jython 15,57% 10,49% 22,91% 12,85%
luindex 37,19% 72,41% 33,90%
lusearch 18,95% 61,39% 15,41%
pmd 19,42% 56,82% 15,71%
sunflow 18,96% 81,45% 57,14% 14,86%
tradebeans 16,16% 19,68% 26,66% 11,85%
xalan 33,01% 38,42% 22,61%
average 23,04% 46,47% 35,44% 18,09%
diff ± 0 - +12,40% -4,96%
Benchmark String HashMap

$Node
Class Concurrent

HashMap
$Node

avrora 37,38% 20,31% 72,65% 22,34
fop 28,10% 20,52% 0% 0%
h2 12,46% 0% 0% 0%
jython 20,55% 0% 0% 12,75%
luindex 42,72% 33,36% 79,32% 33,93%
lusearch 22,71% 14,48% 89,78% 15,27%
pmd 19,66% 0% 0% 0%
sunflow 46,15% 14,34% 92,89% 15,05%
tradebeans 30,67% 10,76% 0% 13,49%
xalan 50,77% 19,09% 77,46% 20,37%
average 31,12% 13,29% 41,21% 13,32%
diff +8,07% -9,76% +18,17% -9,72%

Table 4.8: Average lengths of hot streaks (as a percentage of program
lifetime).
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Cold Streaks
Benchmark All objects Consistently

cold
Medium
sized
objects

[B

avrora 53,90% 0,12% 60,90%
fop 34,03% 0,60% 50% 36,98%
h2 28,21% 2,07% 20,37% 24,51%
jython 31,33% 0,25% 29,16% 32,98%
luindex 64,26% 0,04% 64,13%
lusearch 53,52% 1,42% 55,44%
pmd 28,10% 1,75% 41,88%
sunflow 80,38% 0% 85,72% 81,61%
tradebeans 53,31% 4,36% 0% 63,82%
xalan 77,16% 0,08% 77,93%
average 50,42% 1,07% 37,05% 54,02%
diff ± 0 - -13,37% +3,60%
Benchmark String HashMap

$Node
Class Concurrent

HashMap
$Node

avrora 64,75% 57,40% 38,25% 69,59%
fop 34,77% 48,24% 0% 0%
h2 23,65% 0% 0% 0%
jython 28,52% 0% 0% 30,67%
luindex 64,72% 66,28% 54,55% 60,88%
lusearch 49,96% 80,21% 56,29% 82,04%
pmd 35,89% 0% 0% 0%
sunflow 81,83% 83,75% 65,54% 82,88%
tradebeans 63,47% 67,14% 0% 54,59%
xalan 79,91% 80,92% 57,37% 78,79%
average 52,75% 48,39% 27,20% 45,94%
diff +2,33% -2,03% -23,22% -4,48%

Table 4.9: Average lengths of cold streaks (as a percentage of program
lifetime).
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Table 4.10 shows the difference between average hot and cold streak lengths
for each benchmark.

Benchmark Hot Cold Diff
pmd 19,42% 28,10% 8,68%
h2 18,66% 28,21% 9,55%
fop 23,92% 34,03% 10,11%
jython 15,57% 31,33% 15,76%
avrora 28,59% 53,90% 25,31%
luindex 37,19% 64,26% 27,07%
lusearch 18,95% 53,52% 34,57%
tradebeans 16,16% 53,31% 37,15%
xalan 33,01% 77,16% 44,15%
sunflow 18,96% 80,38% 61,42%

Table 4.10: Hot and cold streak lengths compared.

FromTable 4.8 and Table 4.9, we can see that when grouping all objects, which
in the case of the DaCapo benchmark suite is mostly small objects, the average
longest hot streak is about 23,04% and the average longest cold streak is about
50,42% of program lifetime.These numbers seem to suggest that cold streaks
are longer on average when measured as a percentage of the program lifetime.
We can also find outlier results like the benchmarks “sunflow”, where the aver-
age longest cold streak is about 80,38% of program lifetime, and “pmd”, where
the average longest cold streak is only 28,10% of program lifetime. This could
suggest that certain programs would be more or less suited for the ThinGC ap-
proach.
For all objects combined, the difference between the highest (luindex, 37,19%)
and lowest (jython, 15,57%) ”average longest hot streak” values is about 22%
while the difference between the highest (sunflow, 80,38%) and lowest (pmd,
28,10%) ”average longest cold streak” values is about 52%. This seems to
suggest that hot streaks in the chosen benchmarks can be expected to fall within
a tighter range than cold streaks.
When comparing classes to all objects combined, we see in the ”diff” row
of the ”[B” column of Table 4.8 and Table 4.9, that only objects of the
ByteArray class have a shorter average longest hot streak (by about 5%) and
a longer average longest cold streak (by about 4%). This could suggest that
objects of this class are more likely to stay cold than the “average” object.
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This can also be seen for example when comparing Figure 4.40 to Figure 4.41.

Figure 4.40: Consecutive hot and cold streak lengths of
objects in the ”sunflow” benchmark.

Figure 4.41: Consecutive hot and cold streak lengths of
objects of class ByteArray in the ”sunflow” benchmark.

Conversely, when comparing all objects combined to java.lang.Class, we see
that this class has a longer average hot streak. It is actually the longest average
hot streak among chosen classes at about 41,21% of program lifetime. This
class also has a shorter average longest cold streak, the shortest average cold
streak among classes at about 27,20% of program lifetime. This could suggest
that this class is less likely to stay cold, which can also be seen for example
when comparing Figure 4.42 to Figure 4.43.
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Figure 4.42: Consecutive hot and cold streak lengths of
objects in the ”lusearch” benchmark.

Figure 4.43: Consecutive hot and cold streak lengths of
objects of class Class in the ”lusearch” benchmark.

Rating Class Avg cold
streak

Avg hot
streak

Diff

1 [B 54% 18% +36%
2 String 53% 31% +22%
3 Hashmap 48% 13% +35%
4 Concurrent 46% 13% +33%
5 Class 27% 41% -14%

Table 4.11: Class hot and cold streak lengths compared.

In Table 4.13 we have compared the lengths of the average hot and cold streaks
for each class and ranked them by descending average cold streak length. Our
theory is that classes with longer average cold streaks and shorter average hot
streaks are more likely to stay cold.
This “average consecutive streak” metric would not give credit to short-lived
objects which have maintained their consecutive streak throughout their entire
life, and would count these streaks as short consecutive streaks. As an alter-
native to the ”consecutive” metric we therefore provide the following metric.

4.4.2 Mostly & consistently hot/cold objects
As previously stated, we call an object which throughout its lifetime has been
either always hot or always cold ”consistently” hot/cold. We now introduce a
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”mostly” hot/cold object.

Definition 4.4.1. Mostly hot object. Object with a hot streak lasting from 50
and up to, but not including, 100% of its lifetime. 50%<hot streak<100%.

Definition 4.4.2. Mostly cold object. Object with a cold streak lasting from
50 and up to, but not including, 100% of its lifetime. 50%<cold streak<100%.

The percentages of mostly and consistently hot/cold objects together express
the proportion of objects within a program which have had a longest consec-
utive hot/cold streak lasting longer than 50% of the objects’ lifetime. A high
percentage of mostly & consistently hot/cold objects would give an assurance
of object hot/cold stability throughout the objects’ lifetimes. Being aware of an
average object hot/cold stability factor could contribute to predicting reheats
and avoiding wasteful freezes.
The general limit of 50% was chosen for this thesis as a natural delimiter for
a mostly hot/cold object, however, it is possible that measuring alternative
(shorter/longer) definitions for mostly hot/cold objects could be interesting in
specific cases.
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Hot: Mostly & Consistently Combined
Benchmark All obj. All obj.

(Consist.)
All obj.
(Mostly)

Medium
sz. obj.

avrora 28,72% 27,81% 0,91%
fop 89,08% 77,91% 11,17% 50%
h2 31,29% 18,33% 12,96% 61,54%
jython 11,06% 10,49% 0,57% 33,33%
luindex 73,09% 72,41% 0,68%
lusearch 76,65% 61,39% 15,26%
pmd 63,43% 56,82% 6,61%
sunflow 81,77% 81,45% 0,32% 50%
tradebeans 27,42% 19,68% 7,74% 100%
xalan 39,19% 38,42% 0,77%
average 52,17% 46,47% 5,70% 58,97%
diff ± 0 - - +6,80%
Benchmark [B String HashMap

$Node
Class Concurr.

HashMap
$Node

avrora 24,25% 53,23% 23,98% 75% 6,50%
fop 75,68% 87,02% 70,70% 0% 0%
h2 11,11% 12,43% 0% 0% 0%
jython 3,95% 14,72% 0% 0% 1,22%
luindex 54,43% 65,73% 49,82% 98,24% 59,88%
lusearch 71,94% 80,78% 18,67% 91,64% 0%
pmd 72,43% 78,22% 0% 0% 0%
sunflow 0,22% 38,48% 0% 94,04% 5,61%
tradebeans 7,70% 33,55% 1,57% 0% 10,84%
xalan 13,07% 49,30% 55,32% 76,25% 4,83%
average 33,48% 51,35% 22,01% 43,52% 8,89%
diff -18,69% -0,82% -30,16% -8,65% -43,28%

Table 4.12: Percentages of mostly and consistently hot objects.
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Cold: Mostly & Consistently Combined
Benchmark All obj. All obj.

(Consist.)
All obj.
(Mostly)

Medium
sz. obj.

avrora 71,65% 0,12% 71,53%
fop 19,14% 0,60% 18,54% 50%
h2 29,93% 2,07% 27,86% 0%
jython 88,57% 0,25% 88,32% 83,34%
luindex 26,04% 0,04% 26%
lusearch 38,47% 1,42% 37,05%
pmd 20,07% 1,75% 18,32%
sunflow 18,19% 0% 18,19% 50%
tradebeans 75,78% 4,36% 71,42% 0%
xalan 60,92% 0,08% 60,84%
average 44,88% 1,07% 43,81% 36,67%
diff ± 0 - - -8,21%
Benchmark [B String HashMap

$Node
Class Concurrent

HashMap
$Node

avrora 76,67% 47,02% 76,22% 24,68% 95,02%
fop 50,89% 37,24% 33,41% 0% 0%
h2 28,84% 27,49% 0% 0% 0%
jython 95,43% 85,18% 0% 0% 98,27%
luindex 43,62% 32,82% 49,82% 1,55% 37,14%
lusearch 43,78% 35,04% 85,36% 7,68% 99,95%
pmd 22,96% 16,83% 0% 0% 0%
sunflow 99,61% 61,49% 100% 5,46% 94,36%
tradebeans 91,57% 65,79% 98,69% 0% 84,95%
xalan 87,08% 50,69% 44,68% 20,44% 95,17%
average 64,05% 45,96% 48,82% 5,98% 60,49%
diff +19,17% +1,08% +3,94% -38,90% +15,61%

Table 4.13: Percentages of mostly and consistently cold objects.
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Across the chosen benchmarks the average percentage of mostly & consis-
tently hot objects is about 52,17% and the cold equivalent is about 44,88%.
The average percentage of consistently hot objects is about 46,47% and the
cold equivalent is only 1,07%. We know from Table 4.7 that the average life-
time for consistently hot objects is relatively short, about 27% of program
cycles. Adjusting for these consistently hot (and cold) objects leaves us with
on average 5,7% mostly hot objects and 43,81% mostly cold objects, as can
be seen in the ”average” row of the “All obj. (Mostly)” columns of the tables.
We conclude that objects are more likely to be consistently hot than consis-
tently cold and more likely to be mostly cold than mostly hot. Hot streaks are
more likely to last an entire object lifetime, though it may be relatively short,
and cold streaks are more likely to last between 50-100% of object lifetime.
The difference between the highest (”jython” 88,32%) and lowest (”sunflow”
18,19%) benchmark averages for mostly cold objects 4.4.2 is about a 70,13%.
The difference between the highest (”lusearch” 15,26%) and lowest (”sunflow”
0,32%) benchmark averages for mostly hot objects 4.4.1 is about 14,94%.
Once again, hot streaks seem to be more dependable (within the chosen bench-
marks). The average percentage of mostly hot objects can be expected to fall
within a tighter range than the average percentage of mostly cold objects.
Medium sized objects seem to be less likely to be mostly & consistently cold
and more likely to be mostly & consistently hot. The average percentage of
medium sized objects being mostly & consistently cold is 8,2% lower than that
of all objects, and the hot equivalent is 6,8% higher than that of all objects.
The ByteArray, HashMap$Node and ConcurrentHashMap$Node classes have
lower average percentages of mostly & consistently hot objects and higher
average percentages of mostly & consistently cold objects compared to all
objects. For example, the ByteArray class has the highest average percentage
of mostly & consistently cold objects, about 64,05% and the third lowest
average percentage of mostly & consistently hot objects, about 33,48%. This
would suggest that objects of these classes are more likely to stay cold during
their lifetime than the “average” object which can be seen for example when
comparing Figure 4.44 and Figure 4.45 below.
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Figure 4.44: Consecutive hot and cold streak lengths of
objects in the ”tradebeans” benchmark.

Figure 4.45: Consecutive hot and cold streak lengths of
objects of class ByteArray in the ”tradebeans”

benchmark.

Conversely, java.lang.Class has the second highest average percentage of
mostly & consistently hot objects, about 43,52% and the lowest average
percentage of mostly & consistently cold objects, about 5,98%. This suggests
that objects of this class, unlike the previously mentioned classes, are unlikely
to stay cold during their lifetimes. This can be seen for example when
comparing Figure 4.46 and Figure 4.47 below.

Figure 4.46: Consecutive hot and cold streak lengths of
objects in the ”xalan” benchmark.

Figure 4.47: Consecutive hot and cold streak lengths of
objects of class Class in the ”xalan” benchmark.
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This is consistent with the results from the previous “average consecutive
streak” metric where the ByteArray, HashMap$Node and concurren-
tHashMap$Node classes were more likely to have long cold streaks, less
likely to have long hot streaks and deemed most likely to stay cold.

Class most likely to stay cold
Rating Class Cold Hot Diff
1 [B 64% 33% +31%
2 Concurrent 60% 9% +51%
3 Hashmap 49% 22% +27%
4 String 46% 51% -5%
5 Class 6% 44% -38%

Table 4.14: Differences between percentages of mostly & consistently hot
and cold objects.

In Table 4.14 we have compared the percentages of mostly & consistently hot
and cold objects for each class and ranked them by descending cold percentage.
We believe classes with a higher mostly & consistently cold percentage and a
lower mostly & consistently hot percentage are more likely to stay cold.

4.4.3 Reheats
We have previously plotted reheats and found it uncommon for objects to re-
heat. We now want to create a metric which expresses the stability of the
object. This metric would help us identify objects on a scale from objects
which have been reheated a ”maximum” possible number of times to objects
which have never reheated. We calculate the maximum number of reheats for
an object 4.4.3 and express the actual number of reheats as a percentage of this
max.

Definition 4.4.3. Maximum number of reheats.
The maximum number of reheats for an object is dependent on the length of
the object lifetime and the object hotness in the first GC cycle.
The maximum number of reheats is:

⌊
lifetime

2

⌋
unless the object started hot

and has a lifetime of even length, then the maximum number of reheats is:⌊
lifetime

2
− 1

⌋
.

For example, an object which started hot and had a lifetime of 4 cycles could
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at most have made one reheat while an object which started cold could at most
have made two in the same lifetime.

To prevent the high percentage of consistently hot objects from affecting the
average reheat value, and get a more accurate measurement on how eager ob-
jects are to reheat once they have become cold, only objects which have in
some GC cycle been cold are considered in the calculation of the reheat aver-
age.
Table 4.16 is displaying the ten-percent interval into which the average reheat
percentage of each benchmark falls, or if the average reheat percentage of the
benchmark is 0 or 100%.
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Reheats
Benchmark All objects Medium

sized
objects

[B String

fop (0%,10%) (0%,10%) (0%,10%)
sunflow [10%,20%) 0% (0%,10%) (0%,10%)
lusearch [50%,60%) [50%,60%) [70%,80%) [70%,80%)
luindex (0%,10%) 0% (0%,10%) (0%,10%)
pmd (0%,10%) (0%,10%) (0%,10%)
xalan (0%,10%) (0%,10%) (0%,10%)
h2 [50%,60%) [30%,40%) [30%,40%)
avrora (0%,10%) 0% (0%,10%) (0%,10%)
tradebeans [10%,20%) 0% (0%,10%) (0%,10%)
jython (0%,10%) (0%,10%) (0%,10%)
average [10%,20%) [10%,20%) [10%,20%) [10%,20%)
Benchmark HashMap

$Node
Class Concurrent

HashMap
$Node

fop 0% (0%,10%) (0%,10%)
sunflow (0%,10%) 0% 0%
lusearch 0% 0% 0%
luindex 0% 0% (0%,10%)
pmd (0%,10%) [10%,20%) [10%,20%)
xalan 0% [10%,20%) (0%,10%)
h2 0% 0% 0%
avrora 0% (0%, 10%) (0%, 10%)
tradebeans (0%,10%) 0% (0%,10%)
jython 0% [10%,20%) 0%
average (0%,10%) (0%,10%) (0%,10%)

Table 4.15: Ranges of average reheat percentages.

Overall, the reheat averages are very low, usually within the (0, 10) percent
range and all benchmarks except “h2” and “pmd” have an average reheat per-
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centage below 20%. “h2” and “pmd” however have average reheat percent-
ages within the [50%, 60%) range. For DaCapo we can conclude that in most
benchmarks, once an object has become cold there is a low chance of it re-
heating and it is common for cold objects to stay cold until they die.
The ByteArray and String classes have the highest average reheat values
among classes and the java.util.HashMap$Node class has the lowest reheat
value, much thanks to many benchmarks having an average reheat value of
zero for this class.
The reheat averages mostly seem to follow the conclusions from the previous
tables, however one surprising result is that the average reheat value of the
ByteArray class is higher than that of java.lang.Class. This could possibly be
explained by the higher average lifetime of java.lang.Class objects, 77% vs
50% of program lifetime, which could give java.lang.Class more GC cycles
to possibly reheat.

Class least likely to reheat
Rating Class Range
1 Hashmap (0%, 10%)
1 Concurrent (0%, 10%)
1 Class (0%, 10%)
2 [B [10%, 20%)
2 String [10%, 20%)

Table 4.16: A sorting of the classes by average reheat percentage range.
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Discussion and Conclusions

We have presented a method, and suggested metrics, for examining object be-
haviour in terms of hotness. We have also presented the results from the study
of one benchmark suite.
We presented plots where we found reheats to be uncommon and that objects
which once had become cold, usually stayed steadily cold until their death,
with some benchmarks showing a sudden increase of cold objects in their last
GC cycles. We found few (two out of ten) examples of benchmarks where the
number of cold objects decreased from one cycle to the next.
We saw that long cold streaks were more common than long hot streaks and
that the longest hot streak of objects was often only one GC cycle long. We
saw that many objects were consistently hot, but the remaining objects were
more likely to be mostly cold than mostly hot. We found that the average
lifetime of consistently hot objects was about 32% of program lifetime across
benchmarks, significantly lower than the average lifetime of consistently cold
objects at about 53% of program lifetime. We presented tables of metrics
where we found that the average longest cold streak ( 50%) was longer than
the average longest hot streak ( 23%), that the average percentage of mostly
& consistently hot objects ( 52%) was higher than the cold streak counterpart
( 45%) and that the average percentage of mostly cold objects ( 44%) was
significantly higher than the hot streak counterpart ( 6%).
Since we can generally rely on cold objects staying cold, the efforts to clas-
sify objects by hotness and treat cold objects separately could be justified,
depending on the added overhead. In the case of this benchmark suite, we can
imagine, as a simple starting point, that any overhead need to be recovered on
average within the length of the average longest cold streak (50% of program
lifetime).

59
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If calculated concurrently, the average hotness information could affect freeze
and reheat decisions in ThinGC. For example, knowing the expected reheat
frequency and cold streak length could contribute to avoiding disadvanta-
geous freezes. Also, knowing the average or class specific hot and cold streak
lengths, ThinGC could anticipate reheats and prefetch objects from cold stor-
age.
From this point it could be interesting to examine if any correlation can be
found between allocation site and objects with relatively many reheats in order
to predict sub-optimal freeze candidates. Taking inspiration from the methods
presented in ”Related Work” section 2.4, to predict long-lived objects which
optimises generational garbage collection, such as [50].
We found that the results for our cold metrics like “longest cold streak” and
“mostly cold objects”, varied more than the hot streak counterparts. Values
for hot streaks seemed to fall within a tighter range than the cold counter-
parts. This highlights the importance of identifying suitable programs which
have longer than average cold cycles in terms of program lifetime, for exam-
ple “xalan” at 77%. Such programs will likely suit ThinGC especially well,
unlike programs like “fop” with 78% consistently hot objects and an average
cold streak of 34% of GC cycles.
We also found that objects of certain classes in DaCapo are more or less likely
to stay cold. The classes shown were the most frequently used classes in the
DaCapo benchmark suite. Further exploration of a larger set of classes from
a larger set of programs could confirm our findings. This information could
possibly then be used as a baseline for GC tuning.
We believe that our results show distinctly different behaviours of hot and cold
objects in this benchmark suite. This information is hopefully useful when
developing garbage collection optimisations with object-hotness focus.
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