
Lecture 24
Andreina Francisco
(based on slides by Tobias Wrigstad + …)

Garbage Collection

What is the Problem with this Code?

void priority_queue_destroy(priority_queue_t *priority_queue)
{
 link_t *cursor = priority_queue->first;
 while(cursor)
 {
 free(cursor->element);
 free(cursor);
 cursor = cursor->next;
 }
 free(priority_queue);
}

Use-After-Free

void priority_queue_destroy(priority_queue_t *priority_queue)
{
 link_t *cursor = priority_queue->first;
 while(cursor)
 {
 free(cursor->element);
 free(cursor);
 cursor = cursor->next;
 }
 free(priority_queue);
}

Use-After-Free

• Attempt to access memory after it has been freed

corrupts validly used memory

can cause a program to crash

can potentially result in the execution of arbitrary code

 (see Use After Free Vulnerabilities)

What is the Problem with this Code?

void priority_queue_destroy(priority_queue_t *priority_queue)
{
 link_t *cursor = priority_queue->first;
 while(cursor)
 {
 link_t *temp = cursor->next;
 free(cursor->element);
 free(cursor);
 cursor = temp;
 }
 free(cursor);
 free(priority_queue);
}

Double Free

void priority_queue_destroy(priority_queue_t *priority_queue)
{
 link_t *cursor = priority_queue->first;
 while(cursor)
 {
 link_t *temp = cursor->next;
 free(cursor->element);
 free(cursor);
 cursor = temp;
 }
 free(cursor);
 free(priority_queue);
}

Double Free

• Frees memory after it has been free’d

more or less the same problems as use-after-free

 corrupts validly used memory

 tends to cause a program to crash

 can be difficult to detect

 can result in the execution of arbitrary code

Automatic Memory Management

• Java handles memory automatically

new ClassName(…) automatically allocates enough memory to the heap

When the last reference to an object is removed, the object is junk

When the memory becomes full, junk is automatically cleared to leave space for
new items

• This means:

No malloc/calloc (new always allocate on the heap, at least for what you know!)

No free

Automatic Garbage Collection

• Objective: to give the programmer the illusion that memory is infinite

Also, to avoid use-after-free and double-free vulnerabilities!

• Method: allocate memory, and identify the junk data and release it automatically

• Definition of garbage: data that cannot be accessed by the program (no references)

• More formally, the object O is garbage if there is no path in the memory graph from
any root (the variable on the stack, global variables, etc.) to O

• Two basic ways to do automatic garbage collection:

Reference counting

Tracing

Reference Counting (Project 1)

• Basic idea: each item saves information on how many things point to it

• When this counter reaches 0: free it!

• Each time a reference is created / deleted, update the reference counter:

void *p = malloc(2048); // refcount 1
void *x = p; // refcount 2
p = NULL; // refcount 1
x = NULL; // refcount 0, free(x)

Reference Counting (Project 1)

• Advantages:

One the simplest forms of memory management to implement

Memory is reclaimed as soon as it can no longer be referenced

Incremental - without long pauses for collection cycles:

 Important in real-time applications or systems with limited memory!

 What happens when a lot of memory needs to be free’d?

• Disadvantages:

Counter updates are a source of inefficiency

A naïve implementation can’t deal with cyclic structures (see next pages)

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

Heap

Stack

1

1

1 1

1

1

2

2

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

Heap

Stack

1

0

0 1

1

1

2

1

vi tar bort denna

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

Heap

Stack

1

0

0 1

1

1

2

1

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

Heap

Stack

1

1

1 1

1

1

1

2

we will remove this one!

Leakage!

Reference Counting (Project 1)

• Things to consider:

Memory management overhead (time)

When should free actually happen?

Counters (memory overhead vs overflow)

Tracing GC: Mark-Sweep

• Basic idea - when memory runs out, do the following:

1. Mark all items as unreachable

2. Follow the roots and select all items that can be reached

3. Iterate over all items and free all of those that are not marked in 2.

Tracing GC: Mark-Sweep

• Advantages:

Can handle cyclic references

• Disadvantages:

Stop-the-world! Normal program execution is suspended while the garbage
collection algorithm runs

Memory overhead

Fragmentation

When will it run? Will it ever run?

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

Heap

Stack

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

Heap

Stack
we will remove this one!

Mark reached memory with a different color

• If something is still green after this phase, it is rubbish and should be removed

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

Heap

Stack These two can now be safely removed!

Tracing GC: Mark-Sweep

• Things to consider:

Fragmentation (think about compacting garbage collectors)

Stop-the-world

 can happen at arbitrary times and take arbitrarily long

 what about incremental and concurrent GC?

Keep things marked as non-reachable

Food for Thought…

• Will GC happen??

Some objects are tied to non-memory resources, whose release is an externally
visible program behaviour:

such as closing a network connection

releasing a device or closing a file

…

But reference counting can handle this!!

Food for Thought…

• What about time overhead? What do we want?

Tracing garbage collection:

Allocating a new object can sometimes return quickly and at other times trigger a
lengthy garbage collection cycle.

Reference counting:

allocation of objects is usually fast

BUT decrementing a reference is nondeterministic, since a reference may reach
zero, triggering recursion to decrement the reference counts of other objects
which that object holds.

